том, что фтористые белки при обычной температуре должны быть гораздо менее активными, чем обычные белки. Но на такой планете, как Меркурий, где температура настолько высока, что водородные органические соединения разрушаются, фторорганические соединения могли бы стать как раз настолько активными, чтобы поддержать жизнь; возможно, именно из этих фторорганических соединений и развилась бы там жизнь.
Такая фторорганическая жизнь на фоне серы возможна, конечно, лишь при условии, что количества фтора, углерода и серы на горячих планетах достаточны для развития жизни в результате случайных реакций, протекавших на протяжении всего существования солнечной системы.
Каждый из перечисленных элементов в умеренном количестве имеется в любом уголке Вселенной, так что это условие, в общем, не так уж невыполнимо. Но на всякий случай поговорим и о возможных альтернативах.
Что, кроме углерода, может послужить главной составной частью гигантских молекул, на которых строится жизнь? Какие другие элементы обладают почти уникальной особенностью — способностью образовывать длинные цепочки и кольца из атомов? Ведь именно благодаря этой способности углерода возможно существование гигантских молекул, воплощающих разнообразие жизни.
В этом отношении более всего сходны с углеродом бор и кремний. И в периодической таблице элементов (в том виде, в каком ее обычно изображают) бор располагается как раз слева от углерода, а кремний — точно под ним. Однако бор — это элемент довольно редкий. Из-за низкой концентрации в коре планет его участие в случайных реакциях, порождающих жизнь, было бы таким редким, что жизнь на основе бора вряд ли появилась бы даже за пять миллиардов лет.
Остается только кремний, и уж здесь мы по крайней мере можем чувствовать себя уверенно. На Меркурии или на любой другой «горячей» планете может недоставать углерода, водорода или фтора, но, по-видимому, там имеются огромные количества кремния и кислорода: известно ведь, что это основные компоненты горных пород. Если «горячая» планета начнет сперва утрачивать водород и другие легкие элементы, а затем также кремний и кислород, то она перестанет существовать как планета и превратится просто-напросто в рой железо-никелевых метеоритов.
Кремний, как и углерод, способен образовывать длинные цепи. В результате присоединения атомов водорода к такой цепи образуются силаны. К сожалению, силаны менее стабильны, чем соответствующие углеводороды, и при высоких температурах уменьшается вероятность существования силанов достаточно сложного строения, которые могли бы обеспечить возникновение живого.
Но факт остается фактом: кремний образует в горных породах сложные цепочки, и эти цепочки не разрушаются при высокой температуре, даже если горные породы раскалить добела. Однако эти цепочки состоят не только из атомов кремния (Si — Si — Si — Si — Si), а из атомов кремния вперемежку с атомами кислорода (Si — О — Si — О — Si).
Может случиться так, что каждый атом кремния прикарманит четыре атома кислорода. Тогда к атому кремния сверху и снизу присоединятся атомы кислорода, соединенные в свою очередь с другими атомами кремния, и так далее. В результате получится чрезвычайно стабильная пространственная решетка.
Раз уж мы начали говорить о кремнийкислородной цепочке, то посмотрим, а что же произойдет, если атомы кремния с их способностью подцеплять два дополнительных атома вместо атомов кислорода заполучат атомы углерода — в сочетании, конечно, с атомами водорода? Такие гибридные молекулы, имеющие как кремниевую, так и углеродную основу, называются силиконами. Эти соединения тоже были созданы во время второй мировой войны и с тех пор высоко ценятся за высокую стабильность и инертность.
Возможно, что при более высокой температуре какие-то очень сложные силиконы могли бы проявить активность и гибкость, необходимые для жизни. А может быть, существуют и такие силиконы, которые вместо атомов водорода содержат атомы фтора? Подобные силиконы было бы логично назвать фторсиликонами, но, насколько мне известно, они до сих пор не изучались (но я готов тут же отказаться от своих слов, если кто-нибудь меня поправит)[4].
А не возможно ли существование таких систем, в которых простые молекулы силиконов или фторсиликонов (те, что могут оставаться жидкостями при высоких температурах) служили бы фоном для жизни, а сложные молекулы этого же типа — главными действующими лицами?
Вот мой список химий жизни, охватывающий все температуры, от нескольких сот градусов тепла до абсолютного нуля:
1) фторсиликоны; фон — фторсиликоны;
2) фторуглероды; фон — сера;
3)
4) нуклеиновые кислоты и белки (N); фон — аммиак;
5) липиды; фон — метан;
6) липиды; фон — водород.
В этой полудюжине форм жизни лишь третья есть «жизнь в той ее форме, которая нам известна». Чтобы вы ее случайно не прозевали, я выделил ее курсивом.
Это, конечно, не исчерпывает возможностей, подсказываемых богатым воображением; в книгах научных фантастов можно встретиться и с металлическими существами, живущими на ядерной энергии, и с парообразными существами, живущими в газах, и с энергосуществами, живущими в звездах, и с существами — сгустками мыслей, живущими в космосе, и с существами, не поддающимися никакому описанию, живущими в гиперпространстве, и т. д.
Однако в мой список входят, по-видимому, наиболее вероятные формы жизни как явления чисто химического, жизни, основанной на обычных атомах, встречающихся во Вселенной.
Что ж, когда мы выберемся в космос, то, наверное, обнаружим значительно больше форм жизни, чем ожидаем. Я предвижу встречу не только с нашими внеземными братьями, живущими в мире, где господствует «жизнь в той ее форме, которая нам известна». Я надеюсь, что нам доведется повидаться и с двоюродными братьями, ведущими «жизнь в той ее форме, которая нам неизвестна».
По правде говоря, мне кажется, что следует отдать предпочтение нашим двоюродным братьям. Конкуренция с родными братьями может быть острой, даже чересчур острой, так как вполне вероятно, что мы бросимся отнимать друг у друга родные планеты, а вот с двоюродными братьями, живущими на «горячих» и «холодных» мирах, интересы наши настолько «совпадают», что останется только жить в мире и дружбе. Каждая звездная система вполне могла бы иметь набор всех форм жизни, по одной на каждой из своих планет, и каждая планета при этом была бы бесполезна и нежеланна для прочих разновидностей.
Как легко было бы тогда соблюдать десятую заповедь!
Часть II
Химия