гелий, находящийся в атмосфере, и гелий, сильно рассеянный в земной коре.
Теперь представим себе общество будущего, оснащенное вычислительными машинами и расходующее последние несколько миллионов кубических метров гелия, который еще можно легко добыть. А что дальше? Наскрести ничтожнейшие его количества из воздуха и из земли? Иметь дело с жидким водородом? Отказаться от «криотронизированных» вычислительных машин и попытаться вернуться к малоэффективным гигантским электронным машинам прошлого? Допустить гибель культуры, которая будет полностью зависеть от кибернетических машин?
Я много думал об этом и вот к каким выводам пришел.
Общество, оказавшееся в таком угрожающем положении, должно развивать межпланетные путешествия (а почему бы и нет?), с тем чтобы людям не пришлось искать гелий только на Земле.
Конечно, самый значительный источник гелия в солнечной системе — это само Солнце, но в предвидимом будущем я не нахожу никакого способа, который дал бы нам возможность добыть солнечный гелий.
Другой богатейший источник гелия — Юпитер, с атмосферой глубиной, по-видимому, в тысячи километров. Она обладает исключительно высокой плотностью и, очевидно, на 1/3 состоит из гелия. Недавно были высказаны предположения, что атмосфера Юпитера почти целиком состоит из гелия. Как «выдоить» из Юпитера гелий, представить себе трудно, но можно.
Предположим, человечество сможет создать базу на Юпитере V, самом близком к Юпитеру спутнике. База будет расположена в каких-то 110 000 километров от видимой поверхности Юпитера (то есть от верхних слоев атмосферы). Значительное количество гелия в смеси с другими газами должно находиться даже в еще более высоких слоях атмосферы Юпитера (а следовательно, и ближе к Юпитеру V).
Теперь представьте себе армады управляемых с базы космических кораблей, которые устремляются к поверхности Юпитера и возвращаются с запасом сжатого газа. Такой газ легко разделить на составные части; гелий гораздо легче сжижать на Юпитере V, чем на Земле, так как температура там значительно ниже.
Возможно, удастся собрать, сжижить и запасти несчетное число тонн гелия. По логике вещей мы должны были бы воздержаться от отправки этого бесценного запаса куда бы то ни было, даже на Землю. Зачем тратить энергию и нести колоссальные потери, которые неизбежны при такой транспортировке?
Почему бы вместо этого не построить вычислительные машины прямо на Юпитере V?
Вот об этом-то я и обмолвился в начале главы. Думаю, что именно Юпитер V будет нервным центром солнечной системы. Я вижу, как этот маленький мир, диаметром 100 километров, обращается вокруг переполненного гелием Юпитера, извлекает из него столь необходимый для человечества газ и как постепенно на этом мире создается единый комплекс кибернетических машин, погруженных в самую необычную жидкость, которая когда-либо существовала.
Однако, по-видимому, мне повезет меньше, чем Жансену и Локьеру. Можете назвать меня пессимистом, но мне почему-то кажется, что я не увижу всего этого собственными глазами.
6. Как химики и физики нашли общий язык
Какова форма мышления людей, живущих в определенную эпоху, таковы и научные представления, присущие этой эпохе.
Например, еще в IV веке до нашей эры два греческих философа, Левкипп из Милета и Демокрит из Абдеры, разработали атомную теорию. Все предметы, говорили они, состоят из атомов. В те времена считалось, что различных видов атомов столько, сколько существует во Вселенной веществ, или «элементов», коренным образом отличающихся друг от друга. (Греки полагали, что таковых всего четыре: огонь, воздух, вода и земля.)
Многие известные нам вещества получены в результате комбинирования элементов в различных пропорциях. В процессе разложения веществ на компоненты и образования новых сочетаний в новых пропорциях одно вещество может превратиться в другое.
Все это прекрасно, но возник вопрос, по какому признаку элементы отличались друг от друга. Как установить разницу между атомами различных элементов?
Поскольку атомы слишком малы, чтобы их можно было увидеть или обнаружить каким-либо способом, греческие атомисты могли выбирать для атомов любой отличительный признак, какой им только заблагорассудится. Можно было предположить, что различные атомы имеют разный цвет, несходные отражательные свойства, всевозможные ярлычки на классическом греческом языке или что атомы различаются и по твердости, и по запаху, и по температуре.
Все эти предположения подходили для создания связанной теории построения Вселенной, которую можно было преподнести с подобающим достоинством (чего-чего, а достоинства у древних греков было хоть отбавляй!).
И вот тут-то и выходит на арену форма мышления. Греки специализировались на геометрии. Для них почти вся математика (хотя и не совсем вся) была геометрией, которая по возможности проникала и в другие области знания. Раз уж встал вопрос об отличительных чертах атомов, то ответ, конечно, зиждется на геометрии.
Атомы (решили греческие атомисты) отличаются друг от друга по форме. Атомы огня, очевидно, сильно иззубрены, и поэтому огонь причиняет боль. Атомы воды, наверно, гладкие и круглые, и поэтому вода так легко течет. Атомы земли, по-видимому, имеют форму кубиков, и поэтому земля такая крепкая и устойчивая. И так далее.
Все это звучало весьма правдоподобно и разумно, но так как никто никогда атомов не видел, то теория эта оставалась всего лишь схоластическим упражнением; она казалась не более правомерной, чем умствования греческих философов, не принадлежавших к школе атомистов. Но их рассуждения были более убедительны, и атомисты остались в меньшинстве (в значительном меньшинстве) на добрых две тысячи лет.
Атомистическое учение было пересмотрено в первом десятилетии XIX века английским химиком Джоном Дальтоном. Он также считал, что все состоит из атомов, которые комбинируются и переходят из одного сочетания в другое в различных пропорциях, образуя все известные нам вещества.
В эпоху Дальтона понимание природы элементов приблизилось к современному, и он уже мог говорить об атомах углерода, водорода или кислорода, а не об атомах огня и воды. Далее, в течение XVII и XVIII столетий в области химии было сделано множество открытий, для объяснения которых атомистическая теория оказалась крайне плодотворной. В результате предположение о существовании атомов (по-прежнему невидимых) оказалось гипотезой гораздо более полезной, чем во времена древних греков.
Но теперь Дальтон столкнулся с той же проблемой, что и греки. Как можно различать невидимые атомы?
Что ж, наука в канун XIX века уже перестала быть геометрической и стала просто метрической. Теперь она основывалась на измерении трех основных свойств: массы (обычно неправильно называемой весом), расстояния и времени. Этих трех измерений было достаточно, чтобы управляться с механистической Вселенной Ньютона.
Поэтому Дальтон, сообразуясь с формой мышления своих современников, игнорировал структуру и форму атомов. Все атомы для него были сходными маленькими шариками, не имеющими внутренней структуры. Он механически перенес понятие о массе, расстоянии и времени в свою теорию об атомах. Но из