К ним относятся законы сохранения импульса, сохранения момента количества движения и сохранения энергии.
Все три закона устанавливают соотношения между массой и скоростью — хорошо знакомыми нам величинами. Но атом и образующие его частицы, оказывается, подчиняются еще и четвертому закону сохранения, касающемуся совершенно незнакомого нам явления. Уже в 600 году до новой эры, благодаря исследованиям греческого философа Фалеса Милетского, было известно, что натертая ископаемая смола — янтарь — обладает свойством притягивать легкие предметы. Теперь принято говорить, что натертый янтарь получает
В 1773 году французский физик Шарль Франсуа Дюфе продемонстрировал существование двух разных видов электрического заряда, один из которых был обнаружен на натертом янтаре, а другой — на натертом стекле. Разница между двумя этими электрическими зарядами видна из следующего опыта.
Подвесим два маленьких кусочка пробки рядом на шелковых ниточках. К каждому из них прикоснемся куском электрически заряженного янтаря, при этом некоторая часть электрического заряда стечет в каждый из кусочков пробки. Шелковые нити, к которым они подвешены, больше не висят вертикально, а отклоняются под углом. Теперь пробки находятся друг от друга дальше, чем они были до получения заряда. То же самое случится, если обоих кусочков пробки коснуться электрически заряженными кусочками стекла.
Если, однако, одного куска пробки коснуться заряженным янтарем, а другого стеклом, оба кусочка притянутся друг к другу. В этом и заключалась разница, которая привела Дюфе к предположению о существовании двух видов электрического заряда. Возникло обобщение:
В сороковых годах XVIII века американец Бенджамин Франклин, человек широкого кругозора, начал эксперименты с электричеством. Он заметил, что если тела, несущего один вид заряда, коснуться телом, несущим равный по величине заряд другого знака, заряды нейтрализуют друг друга, и оба тела становятся электрически незаряженными. Как будто электрическая жидкость перелилась оттуда, где она была в избытке, туда, где ее не хватало. В результате в обоих местах установился какой-то средний уровень.
Франклин считал, что тело, содержащее электрическую жидкость в избытке, несет
Последующие поколения физиков, изучавших поведение электрически заряженных тел, пришли к выводу, что
Действительно, когда натирают янтарь, электрический заряд не возникает из ничего. Если янтарь натирают рукой, отрицательный электрический заряд, полученный янтарем компенсируется точно таким же положительным зарядом, который получает рука. Сумма этих двух зарядов равна нулю. Когда электрический заряд с руки уходит в землю и растекается по всей земной поверхности, кажется, что он исчезает. Создается иллюзия «возникновения» заряда на янтаре. Мы рассмотрели уже аналогичные случаи с положительными и отрицательными импульсами или с моментами количества движения по и против часовой стрелки. Следовательно, можно сформулировать четвертый закон сохранения:
Ядерные реакции и электрический заряд
Когда в 90-х годах прошлого века физики стали яснее представлять себе структуру атома, они обнаружили, что, по крайней мере, некоторые его части несут электрический заряд. Например, электроны, заполняющие внешние области атома, заряжены отрицательно, а ядро в центре атома несет положительный электрический заряд. Конечно, сразу же возник вопрос о величине этих зарядов, прежде чем ответить, рассмотрим некоторые единицы заряда.
Общепринятой единицей электрического заряда является
Но даже электростатическая единица чрезвычайно велика для измерения заряда одного электрона. Впервые с достаточной точностью заряд электрона измерил в 1911 году американский физик Роберт Эндрюс Милликен. Он оказался равным примерно половине миллиардной доли электростатической единицы. Согласно последним измерениям, заряд электрона составляет 4,80298·10-10 электростатических единиц. Чтобы не пользоваться такой неудобной дробью, приняли электрический заряд электрона равным —1, где знак минус означает отрицательный заряд. Любой электрон, участвует ли он в электрическом токе или принадлежит атому какого-либо элемента, имеет заряд, точно равный -1, независимо от точности наших самых чувствительных инструментов.
Простейшее атомное ядро, т. е. ядро атома водорода имеет электрический заряд +1. Насколько позволяют судить наиболее чувствительные приборы, положительный заряд ядра водорода точно равен отрицательному заряду электрона (хотя, конечно, противоположен по знаку). Более тяжелые атомные ядра имеют большие положительные заряды, которые обязательно выражаются целым числом. До сих пор, по крайней мере, не обнаружили какого-либо дробного заряда, положительного или отрицательного.
Атомы каждого элемента имеют характерный ядерный заряд, отличный от заряда атомов других элементов. Например, все атомы водорода имеют ядерный заряд +1, все атомы гелия +2, все атомы углерода +6, все атомы урана +92. Этот ядерный заряд называется
Изотопы отличаются друг от друга массовым числами, но тем не менее они идентичны по атомному номеру и являются атомами одного и того же элемента. Существуют как атомы с ядерным зарядом +1 и массовым числом 1, так и атомы с ядерным зарядом +1 и массовым числом 2. Оба типа относятся к атомам водорода. Их называют водород-1 или водород-2, или 1Н1и 1H2, где индекс вверху справа — массовое число, индекс внизу слева— атомный номер. Таким же образом два изотопа урана записывают 92U238 и92U235.
Поскольку речь дальше будет идти о сохранении электрического заряда, я буду подчеркивать его количество, обозначая любой изотоп атома урана как U+92.
Оба изотопа урана радиоактивны. Каждый распадается, излучая ?-частицу и превращаясь в атом тория. Атомный номер тория 90, а ?-частица, являющаяся ядром атома гелия, имеет атомный номер 2. Тогда можно записать:
U+92> Th+90 + He+2.
Начальное атомное ядро имело заряд +92, а два конечных ядра +90 и +2, т. е. в общей сложности +92. Это частный случай общего правила. Атом с атом номером
Применим ли закон сохранения электрического заряда к излучению атомным ядром ?-частицы? Эта частица представляет собой электрон, который обозначается
Рассмотрим далее поведение изотопов тория, образовавшихся при распаде урана. Они не очень распространены в природе, поскольку, в свою очередь, быстро распадаются. При этом излучается ?-частица и образуется изотоп элемента протактиния, который имеет атомный номер 91 и обозначается символом Ра.