Ответ, очевидно, надо искать в природе спина. Предположим, что субатомная частица — крошечная сфера, вращающаяся вокруг своей оси и обладающая двумя полюсами. Если посмотреть на частицу со стороны одного из полюсов, будет казаться, что она вращается против часовой стрелки, а со стороны другого полюса — по часовой стрелке. Назовем полюс, с которого кажется, что частица вращается против часовой стрелки, северным. (Подобно этому вращение Земли с запада на восток происходит против часовой стрелки, если смотреть на Землю со стороны северного полюса.) При вращении заряженная частица создает магнитное поле, в котором есть и северный, и южный магнитные полюса. В протоне северный магнитный полюс совпадает с северным полюсом, а в антипротоне северный магнитный полюс совпадает с южным. Другими словами, магнитное поле антипротона противоположно магнитному полю протона (рис. 5). Магнитные и электрические свойства частицы противоположны соответствующим свойствам античастицы.

Рис. 5. Магнитные полюса протона и антипротона.

Хотя нейтрон не имеет электрического заряда, тем не менее он имеет связанное с ним магнитное поле. Причина этого не совсем ясна, но физики подозревают, что протон состоит из областей с положительным и отрицательным зарядом, расположенных несимметрично, что приводит к появлению магнитного поля. Магнитное поле нейтрона ориентировано в одном направлении, а антинейтрона — в другом. Именно в этом и заключается их различие.

Масса антинейтрона равна массе нейтрона, а масса антипротона — массе протона. Это означает, что антинейтрон несколько тяжелее антипротона и, следовательно, может в него превратиться. При распаде антинейтрона с нулевым зарядом в антипротон с зарядом -1 возникает отрицательный заряд. Согласно закону сохранения электрического заряда, при таком превращении одновременно должен возникнуть и положительный заряд. Положительный заряд появляется в виде позитрона:

'п > 'p- + 'e+.

Распад антинейтрона аналогичен во всех отношениях распаду нейтрона (за исключением обратных зарядов). Даже период полураспада в обоих случаях одинаков. Процесса, обратного антинейтронному распаду, нет. Антипротон сам по себе стабилен, так же как протон, и, насколько мы знаем, остается неизменным.

Сохранение барионного числа

До сих пор мы не ответили на вопрос: почему протон стабилен? Теперь мы можем к этому вопросу добавить другой: почему стабилен антипротон? Совершенно неуместно говорить о том, что протон имеет наименьшую массу, с которой связан положительный заряд. Такое искушение могло у нас возникнуть, пока мы не ввели античастицы. Ведь протон мог бы распасться на позитрон и фотоны ?-лучей. При этом электрический заряд сохранился бы, а все другие законы сохранения удовлетворились бы автоматически. Подобным образом антипротон мог бы распасться на электрон и ?-квант.

Если какой-нибудь распад не нарушает ни одного из законов сохранения в субатомном мире, он должен иметь место. Распад может быть очень редким явлением, но он обязательно должен происходить. Если, с другой стороны, какой-то субатомный процесс упорно не желает протекать, значит, он нарушает какой-нибудь закон сохранения.

Протон никогда не распадается на позитрон. Этот процесс не нарушает ни один из известных нам законов сохранения, следовательно, ему препятствует какой-то новый закон. Превращение протона в позитрон не нарушает закона сохранения электрического заряда, так как оба несут положительный заряд, равный единице. А свойства позитрона и фотонов, образующихся из протона, легко подобрать таким образом, чтобы не нарушались законы сохранения импульса, момента количества движения и энергии.

Итак, физикам пришлось сделать вывод о том, что существует пятый, прежде неизвестный закон сохранения. Когда они еще раз внимательно стали изучать все субатомные процессы, которые они знали, им начало казаться, что барионы вообще никогда не исчезают. Всякий раз, когда исчезал барион одного вида, мгновенно возникал барион другого вида. Конечно, когда барион встречается с антибарионом (например, когда протон встречает антипротон), обе частицы могут исчезнуть, не оставив взамен никакого другого бариона.

Чтобы разобраться в таком странном поведении барионов, всем субатомным частицам физики приписали определенные барионные числа. Протон и нейтрон получили барионные числа +1 каждый, а антипротон и антинейтрон -1 каждый. Всем лептонам (электрону, позитрону и фотону) приписали нулевые барионные числа. Итак был сформулирован новый закон: суммарное барионное число замкнутой системы постоянно. (Все законы сохранения, рассмотренные нами, были открыты при исследовании явлений обычной повседневной жизни а затем применены к атому. Теперь мы в первый, но не в последний раз встретились с законом сохранения, возникшим непосредственно при изучении явлений, происходящих в субатомном мире.)

Рассмотрим несколько примеров. При радиоактивных превращениях ядро урана-238 распадается на ядро тория-234 и ?-частицу (гелий-4). Ядро урана-238 содержит в общей сложности 238 протонов и нейтронов, следовательно, его барионное число 238. Аналогично барионное число тория-234 равно 234, а ?-частицы — 4. Поскольку сумма барионных чисел тория-234 и ?-частицы равна 238, барионное число в этом процессе сохраняется. Далее, ядро тория-234 излучает ?-частицу (т. е. электрон с нулевым барионным числом) и превращается в ядро протактиния-234. Следовательно, барионное число снова сохраняется. В действительности оно сохраняется во всех известных радиоактивных превращениях. А что происходит с барионным числом элементарных частиц? Если нейтрон распадается на протон и электрон, барионное число сохраняется, так как сумма барионных чисел протона и электрона равна единице. Точно так же сохраняется барионное число и при распаде антинейтрона на антипротон и позитрон.

Если протон и антипротон, взаимодействуя, превращаются в нейтрон и антинейтрон, суммарные барионные числа до и после реакции равны. Если взаимодействуют протон и антипротон, образуя два ?- кванта (или любое число их), закон сохранения барионного числа снова выполняется, так как +1–1 = 0 + 0.

Во всех известных до сих пор атомных и субатомных процессах барионное число сохраняется. Физики ни разу не сталкивались с нарушением закона сохранения барионного числа. Теперь становится понятно, почему протон не превращается спонтанно в позитрон, а антипротон — в электрон. В первом случае барионное число +1 стало бы нулем, а во втором — в нуль превратилось бы барионное число -1. Ни одно из этих превращений невозможно без нарушения закона сохранения барионного числа.

В самом деле, насколько мы знаем, протон и антипротон — наименее тяжелые из известных барионов. Именно поэтому они стабильны. Любое спонтанное превращение означало бы появление менее тяжелых частиц. Но любая более легкая частица — не барион, и, следовательно, за кон сохранения барионного числа был бы нарушен.

По закону сохранения электрического заряда, казалось бы, ни один электрон не возникает без одновременного рождения позитрона. Согласно тому же закону и закону сохранения барионного числа, ни один протон не возникает без одновременного рождения антипротона. В окружающей нас Вселенной электронов и протонов сколько угодно, а позитроны и антипротоны исключительно редки. Почему?

Убедительного ответа на этот вопрос еще нет. Одна гипотеза предполагает, что, когда возникла наша Вселенная, частиц и античастиц было равное количество, но они были как-то разделены. Возможно, кроме нашего мира существует также антимир. Все вещества нашего мира состоят из атомов с ядрами из протонов и нейтронов и с электронами во внешних областях атома. В антимире антиматерия должна состоять из атомов с ядрами из антипротонов и антинейтронов и с позитронами вместо электронов во внешних областях атома. В антимире обычное вещество встречалось бы исключительно редко. (До недавнего времени антивещество оставалось просто теоретической концепцией. Однако в 1965 году физики Брукхейвенской национальной лаборатории получили очень недолговечные ядра из антипротона и антинейтрона. Известно, что ядро водорода-2 состоит из протона и нейтрона.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату