возбужденного состояния в менее возбужденное, он излучает фотон видимого света, длина волны которого зависит от разности энергий между двумя возбужденными состояниями атома. Тот же самый атом может поглотить или «поймать» фотон с точно такой же длиной волны, при этом электрон перейдет из менее возбужденного состояния в более возбужденное. Каждый тип атома излучает фотоны определенных длин волн (в зависимости от величины энергии его возбужденных состояний) и при подходящих условиях поглощает фотоны с точно такими же длинами волн.

И все-таки разница между прямым и обращенным во времени событием существует не только в изменении направления и последовательности. Поймать мяч труднее, чем бросить его. Бросая мяч, вы приводите в движение неподвижный предмет, и все зависит только от вас. Располагая своим временем, вы можете удобнее взять мяч, тщательно прицелиться и т. д. Когда же вы ловите мяч, приходится иметь дело с движущимся предметом и зевать некогда. Когда мяч приблизится, его нужно быстро схватить, так как мяч будет оставаться в пределах досягаемости долю секунды. В эту долю секунды вы должны успеть вытянуть руку точно в направлении движения мяча и остановить его. Если вы промахнетесь, мяч пролетит мимо.

То же самое происходит и с атомом, излучающим фотон. Такой атом испускает фотон за время, которое в среднем составляет около 10-8 сек. Следовательно, атом, так сказать, сам распоряжается своим временем и излучает фотон, когда ему удобно.

Чтобы поглотить этот же фотон, атому необходимо 10-8 сек, что является естественным следствием обратимости событий. Но атом не может поглотить фотон без значительных хлопот. Фотон движется со скоростью света и не остается вблизи атома в течение всего промежутка времени 10-8 сек. За такой промежуток времени фотон света пролетает в среднем 300 см. Некоторые фотоны могут пройти большее расстояние, а другие меньшее. Понятно, почему обычно атомам очень трудно поймать фотоны: ведь размер атома значительно меньше этого расстояния! (Точно так же баскетболистам трудно ловить мячи, летящие слишком быстро). Тем не менее, случайно атом может поймать и поглотить фотон.

Все сказанное предполагает, что фотон не имеет собственных размеров; хотя на самом деле его размеры довольно велики. Типичный фотон видимого света имеет длину волны около 1/20 000 см. На этой длине укладывается в ряд около тысячи атомов. Фотон видимого света можно представить как некую сферу, диаметр которой в тысячу раз больше диаметра атома, а объем в 1000000000 раз больше объема атома. В любой момент времени фотон света соприкасается приблизительно с миллиардом атомов, один из которых ухитряется поймать и поглотить его.

Следовательно, глубина, на которую фотон проникает в вещество до поглощения, не 300 см, а в миллиард раз меньше, т. е. 3·10-7 см.

На таком расстоянии умещаются в ряд не более 10–15 атомов. Это означает, что фотон света до момента поглощения проникает в вещество не глубже, чем на 10–15 атомарных слоев. Толщина в 10–15 атомов — сущий пустяк в обычных масштабах, поэтому большинство твердых веществ даже в виде тонких пленок непрозрачны для света (хотя золотую фольгу можно сделать настолько тонкой, что она станет прозрачной).

Чем короче длина волны света, тем меньше фотон, тем меньше атомов соприкасается с ним в любой момент времени и, следовательно, тем больший путь он проходит через вещество до поглощения. Именно по этой причине ультрафиолетовый свет проникает в кожу человека глубже, чем видимый свет; рентгеновские лучи свободно проходят через мягкие ткани тела и останавливаются только более плотным веществом костей; а ?-лучи пронизывают плотное вещество на много сантиметров. (Конечно, видимый свет проходит значительное расстояние в таких веществах, как стекло или кварц, не говоря уже о большинстве жидкостей, но все это является предметом отдельного рассмотрения).

Поглощение нейтрино

Постараемся теперь использовать все вышесказанное применительно к нейтрино и антинейтрино. Запишем еще раз реакцию распада нейтрона, в результате которой образуется протон, электрон и антинейтрино:

п > р+ + е- + '?.

Предположим, что при подходящих условиях возможен обратный процесс, в котором протон, захватывая электрон и антинейтрино, становится нейтроном. Тогда обратная реакция выглядела бы так:

р+ + е- + '? > п.

Естественно, протон должен поймать электрон и антинейтрино одновременно, что очень сильно уменьшает вероятность успешного завершения процесса. (Это равносильно тому, чтобы просить баскетболиста поймать одной рукой одновременно два мяча, летящих на него с разных сторон.)

Для упрощения задачи изменим порядок обращения. Любой процесс, в котором происходит поглощение электрона, можно заменить процессом, в результате которого рождается позитрон. (Подобное правило существует в алгебре: вычитание -1 равносильно прибавлению +1.) Другими словами, вместо одновременного поглощения электрона и антинейтрино протон может поглотить антинейтрино и излучить позитрон:

р+ + '? > п + 'е+.

При таком варианте реакции законы сохранения выполняются. Поскольку протон заменяется нейтроном (оба с барионным числом +1), а антинейтрино заменяется позитроном (оба с лептонным числом -1), законы сохранения барионного и лептонного чисел выполняются.

Остается рассмотреть вероятность поглощения антинейтрино протоном. Период полураспада нейтрона равен 12,8 мин, хотя отдельным нейтронам для распада требуется больше или меньше 12,8 мин. Следовательно, для образования нейтрона при захвате протоном антинейтрино и излучении позитрона требуется в среднем 12,8 мин. Другими словами, антинейтрино поглощается протоном в среднем за 12,8 мин.

Но нейтрино распространяется со скоростью света и за 12,8 мин проходит расстояние 2,3·108 км (т. е. путь, приблизительно равный расстоянию от Солнца до Марса). Трудно поверить, что антинейтрино до поглощения способно пройти такое огромное расстояние в твердом веществе, даже если предположить, что объем его равен объему фотона. Но на самом деле антинейтрино значительно меньше атома.

В действительности дело обстоит гораздо сложнее, В случае фотонов поглощение происходит за счет электронов, занимающих большую часть объема атома, а в твердом веществе атомы плотно прилегают друг к другу. Антинейтрино же поглощается протонами, расположенными в атомных ядрах, которые занимают ничтожную часть атома. Антинейтрино, пролетая через твердое вещество, очень редко сталкивается с крошечным ядром. Лишь одну стомиллионную всего времени, в течение которого антинейтрино находится внутри атома, оно бывает настолько близко к протону, что последний может захватить его. Следовательно, для того чтобы у антинейтрино был определенный шанс быть пойманным протоном, оно должно пройти в твердом веществе путь в сто миллионов раз больший, чем 230 000 000 км. Было установлено, что в среднем антинейтрино должно пролететь в свинце около 3500 световых лет до поглощения.

Естественно, во Вселенной нигде нет слоя свинца толщиной в 3500 световых лет. Вселенная состоит из отдельных звезд, чрезвычайно редко распределенных в пространстве, а диаметр любой звезды значительно меньше одной миллионной светового года. Большинство звезд состоят из вещества, плотность которого значительно меньшей плотности свинца. Исключение составляет сверхплотное вещество сравнительно небольшого ядра звезды. (Во Вселенной имеются и сверхплотные звезды, но они очень малы

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату