выразить через неопределенность энергии ?
Согласно эйнштейновской версии принципа неопределенности, чем точнее мы определяем энергию системы, тем менее точно знаем момент времени, в который энергия действительно имеет это определенное значение, и наоборот.
В обычных условиях энергию системы определяют в течение достаточно длинного отрезка времени, поэтому можно в принципе определить ее с большой точностью и убедиться, что закон сохранения энергии выполняется с такой же большой точностью.
А если необходимо определить энергию системы в течение, скажем, одной триллион-триллионной доли секунды? В этом случае время нужно определить по крайней мере с такой же степенью точности, следовательно, неопределенность энергии будет очень большой. В этом случае нельзя сказать, имеет ли система такую энергию, которую она «должна» иметь согласно закону сохранения энергии, так как из-за неточности измерения энергия системы может быть значительно больше или значительно меньше истинного значения.
Предположим, школьнику запрещается в любое время неучтиво относиться к строгому учителю под страхом суровой порки. Есть ли у учителя основания считать, что мальчишка не высовывает язык каждый раз, когда он поворачивается к нему спиной? Учитель может обернуться и не увидеть высунутого языка, так как ученик спрячет язык быстрее, чем учитель повернется. Неважно, поймает учитель мальчишку или нет. Если мальчишка высунет свой язык, он нарушит правила вне зависимости от того, будет ли он пойман или нет. Значит, практически правило для школьника означает не «Быть вежливым», а «Никогда не быть пойманным за невежливость». Если учитель не заметит высунутого языка, у него не будет основания наказать мальчишку.
Аналогично закон сохранения энергии требует, чтобы система имела определенное фиксированное значение энергии вне зависимости от того, как ее измеряют. А если энергию системы нельзя измерить точно, нельзя с чистой совестью утверждать, что ее величина должна быть именно такой.
Короче говоря, закон сохранения энергии мы должны формулировать следующим образом:
Эту довольно гибкую версию закона сохранения энергии использовали при детальном рассмотрении ядерного поля, для объяснения существования атомных ядер элементов тяжелее водорода. В начале 30-х годов над этой проблемой работал японский физик Хидэки Юкава, опубликовавший свои результаты в 1935 году. Он предположил, что ядерное поле создает сильное притяжение с помощью обменной частицы. Самим своим существованием эта частица нарушает старую, доквантовую формулировку закона сохранения энергии. Значит, она существует только в течение очень короткого времени, дозволенного ей принципом неопределенности.
Предположим, что нейтрон или протон испускает частицу, которой в обычных условиях не хватает энергии, чтобы вылететь из нейтрона или протона. Такая частица должна быстро поглотиться за время, определяемое принципом неопределенности. Эту частицу, называемую
Если виртуальная частица возникает внутри ядра и движется со скоростью света, она проходит расстояние от одного нуклона до другого и обратно приблизительно за 5·10-24
Другими словами, если бы протон излучал частицу в 250 раз тяжелее электрона, ее нельзя было бы зарегистрировать за время, меньшее чем 5·10-24
Так, в 1935 году Юкава предсказал, что ядро устойчиво благодаря ядерному полю, которое существует за счет непрерывного испускания и поглощения частиц с массой, приблизительно в 250 раз большей массы электрона. А принцип неопределенности объяснил, почему ядерное поле имеет такой маленький радиус действия.
Глава 11. Мюоны
Открытие мезона
Пока обменные частицы не найдены и их существование не продемонстрировано каким-либо образом, они остаются не более чем теоретическим вымыслом. Мы знаем, что виртуальная частица остается виртуальной толь-ко потому, что системе, из которой она возникает, не хватает энергии, чтобы сделать ее реальной. Если же системе сообщить энергию, которая превратилась бы в массу частицы, последняя находилась бы тогда вне сферы действия принципа неопределенности, и ее можно было бы обнаружить. Однако для этого атомному ядру необходимо сообщить по крайней мере 125
Теперь известно, что частицы космических лучей представляют собой голые атомные ядра, которые медленно ускоряются за время своего длинного путешествия через межзвездное пространство (по- видимому, за счет переменных магнитных полей звезд и галактик). (Поскольку вещество Вселенной состоит в основном из водорода и гелия, не удивительно, что космические лучи содержат приблизительно 78 % протонов (ядра водорода), 20 % ?-частиц (ядра гелия) и 2 % более тяжелых ядер.
Положительно заряженные ядра представляют собой
Физики, исследовавшие космические лучи в начале 30-х годов, строили догадки (совершенно независимо от теории ядерного поля Юкавы) о существовании частиц тяжелее электрона, но легче протона. Такие частицы с промежуточной массой были нужны для объяснения данных, полученных в процессе исследования космических лучей. В 1935 году, вскоре после того, как была опубликована теория Юкавы,