другие модели; количество ее определяется проходимостью связи.
Активное состояние модели можно назвать физиологическим термином «возбуждение». В нейронах мозга оно выражается частотой импульсов, в СИ на физических сетях — это электрический потенциал. В ИИ, моделируемом на цифровых машинах, уровень активности моделей — это главный параметр, «буква», выраженная числом, и его нужно пересчитывать для каждого временного такта по статическим и динамическим характеристикам. Впрочем, для АИ это касается только моделей в кратковременной памяти. Операции активирования моделей могут быть двух видов: извлечение модели из длительной памяти с расчетом ее активности или пересчет уровня активности модели, уже находящейся в кратковременной памяти, если она получает дополнительный импульс по связям от другой модели.
В СИ выбор новой модели для активации определяется структурой связей, идущих от активной модели. В АИ новая модель вызывается из длительной памяти по «адресу», записанному в «словаре фраз», в котором первым «словом» является уже возбужденная модель. Например, есть «словарь» предмет— действие, в нем есть модель «хлеб», ей соответствует модель действия «жевать». Последняя и будет вызвана, если в оперативной (кратковременной) памяти содержится возбужденное «слово» «хлеб». Уровень активности модели «жевать» будет подсчитан, исходя из статической характеристики коэффициента проходимости связи, записанного в «словаре», и активности модели «хлеб».
В соответствии с нашей гипотезой для функционирования интеллекта необходимо еще другое состояние, противоположное по знаку возбуждению,— так называемое «торможение». Этот термин принят в нейрофизиологии. Мы его представляем как отрицательную активность, которая тоже генерируется специальными центрами и вычитается из положительной активности при расчетах. Впрочем, необходимость в торможении нужно еще уточнять при проектировании ИИ.
Сравнение моделей и распознавание образов
Второй тип операции с моделями — это их сравнение между собой с целью установления как общности, так и различия. Реализация действия целиком зависит от вида интеллекта и организации памяти. В мозге сравнение осуществляется, по всей вероятности, путем условного «наложения» моделей друг на друга. При этом их сходство и различие определяются по количеству общих элементов. Из физиологии известно, что очаг возбуждения в коре генерирует торможение на окружающие участки, затем возбуждение первого очага падает, его «соседи» освобождаются от торможения, и возбуждается другой очаг коры. Можно предполагать, что этим следующим очагом, то есть моделью, будет такой очаг, у которого много связей с первым или много общих нейронов в составляющих модели ансамблях. Сходство и различие определяются по отношению к каким-то третьим моделям-признакам, связи к которым идут от первой и второй из сравниваемых моделей. Допустим, что первая возбужденная модель вызвала к активности признак 1, а вторая — активированная по сходству — возбудила признак 2. Степень совпадения признаков — это мера общности и различия моделей. У животных нет количественного выражения для этой меры, у человека, овладевшего счетом, она есть.
Для АИ сравнение моделей — банальная операция вычитания двух строк цифр. Выраженная цифрами модель разделена на разряды со своими значениями. Можно предположить, что в первом разряде представлена наиболее обобщенная модель (какое-то материальное тело), во втором — крупные структурные блоки (голова, туловище, ноги, отличающие человека), в последующих разрядах — детали. Такой образ всегда имеет место, когда мы воспринимаем объект, даже при фокусировке зрения на его деталях. По этим разрядам и будет осуществляться сравнение.
Сравнение известной модели с неизвестными лежит в основе распознавания образов. По модели объекта, отпечатанного с рецептора в кратковременной памяти, которая не имеет связей с другими моделями и, следовательно, является неизвестной, нужно найти модель-эталон, имеющую такие связи, иначе говоря, входящую в различные «фразы» и числящуюся в «словарях». Именно связями определяется то, насколько знаком нам тот или иной объект: чем больше связей, тем лучше мы его знаем. Вероятность распознавания определяется точностью совпадений неизвестной модели с эталонами. Множественное число я употребил не случайно: объект может походить на несколько других, известных.
Распознавание в СИ осуществляется автоматически: ансамбль возбужденных с рецептора элементов, который представляет собой модель неизвестного объекта, накладывается на другую модель. Она активируется, а затем активируются связанные с ней модели, опознающие объект. Поочередно может активироваться несколько похожих моделей, каждая со своей степенью сходства.
В АИ для распознавания модели нужна специальная программа извлечения из постоянной памяти серии моделей и сравнение каждой из них с моделью объекта. Выборка моделей из памяти должна производиться начиная с самого обобщенного признака — «буквы». По ней выбирается «словарь» и далее сравниваются вторые и следующие «буквы», так же как производится поиск значения «слова» по «словарю». «Известность» наиболее близкого из искомых «слов» определяется числом вхождений его в «словари фраз». Степень вероятности опознания объекта определяется совпадением последних «букв» — деталей, потому что по первым «буквам», определяющим обобщенные признаки, всегда можно найти много похожих. Человека легко отличить от других объектов, труднее распознать — кто есть кто.
Остановлюсь на двух обстоятельствах, осложняющих распознавание. Первое — «неполнота» модели объекта, обусловленная помехами восприятия, дальностью расстояния или недостаточным напряжением рецептора. Неполнота или неясность первичной модели выражается в отсутствии ряда деталей, в «крупноблочности». При этом всегда присутствует «буква», объясняющая неполноту,— показатель низкой настройки рецептора или наличия внешних помех. Я намеренно не употребил понятие «обобщенность» применительно к такой модели, потому что оно предусматривает выражение модели крупными блоками в результате специального отказа от деталей, а не отсутствия их из-за плохого восприятия. Неполную модель можно распознать, только сравнивая ее с обобщенными моделямиэталонами, чем и определяется полнота распознавания. Например, видно, что объект — человек, но мужчина это или женщина, определить нельзя из-за неясности образа. Более четкую первичную модель можно получить за счет настройки рецепторов или приближения к объекту.
Рис. 20. Схема гипотетических «рельсов» в «рецепторном поле», позволяющих производить приведение модели к одному определенному размеру. В памяти хранится модель а. При восприятии объекта с близкого расстояния большая модель б уменьшается до размеров а; при восприятии объекта с большого расстояния малые модели в или г увеличиваются до размеров а.
Второе обстоятельство — это различие в размерах первичной модели и моделей-эталонов. Общеизвестно, что человек может распознать объект с разного расстояния, если он хорошо изучен вблизи. Распознавания прямым наложением моделей здесь не получится. Нужно допустить специальный механизм приведения модели к одному определенному размеру в виде своеобразных «рельсов» в «рецепторном поле», как показано на рис. 20. «Рельсы» эти позволяют изменять размер первичной модели, сохраняя сходство. По всей вероятности, нечто подобное есть в зрительной области коры. Для АИ перекодирование первичной модели цифровым кодом должно предусматривать приведение к стандартному размеру моделей-эталонов.
Есть еще ряд обстоятельств, затрудняющих распознавание: различия исходных положений объекта, его деформации и др. Многие из возникающих здесь вопросов подробно исследовались кибернетиками, и полученные ими результаты можно применить и для АИ.
Дописывание «фразы» — вспоминание
Операцией дописывания «фразы» можно назвать активацию какой-либо одной модели, являющейся