временем?»
Из уст Ньютона прозвучал ответ — самый простой, самый удобный для работы. Для физики не имело никакого значения, что гениальный физик вложил в понятия абсолютных времени и пространства мистический смысл. Наука использовала их только в качестве мысленной инерциальной системы отсчета — единственно возможной в ту пору. И не оставляла попыток отыскать им реальную, физическую опору.
Прошло несколько десятилетий — и нашлись факты, которые обещали исполнение этого закономерного желания ученых.
Надежду открыло развитие науки о свете — оптики.
Однако, как вы скоро увидите, в конце концов оно опрокинуло эту надежду и поставило ученых в весьма затруднительное положение.
Глава 8. СВЕТ И ЭФИР
Что такое свет? Как объяснить его странную способность пронизывать просторы мира и останавливаться перед тоненькой черной бумажкой? Почему он отражается от зеркал и преломляется в воде? Чем вызваны замечательные преобразования световых лучей в линзах очков и телескопов?
Разыскивая ответы на эти и другие вопросы, оптика, как и любая настоящая наука, прежде всего обратилась к экспериментам. Их было поставлено великое множество.
Ученые вооружились зеркалами и призмами, выпуклыми и вогнутыми стеклами. Солнечные лучи пропускали через прозрачные кристаллы, густые решетки, тончайшие дырочки. Это был первый прорыв в немеханическую физику. Прорыв радостный, бурный, увенчавшийся целым фейерверком великолепных открытий и неожиданных удивлений. Выяснились, к примеру, поразительные свойства света гасить самого себя и, наоборот, усиливать — скажем, давать светлое пятно в середине круглой тени и т. д.
После обсуждения всевозможных гипотез, после многолетних споров и дискуссий (в ранней оптике их было, пожалуй, больше, чем в любой другой области физического знания) удалось добиться более или менее общего мнения. В середине XIX столетия физики согласились: свет имеет волновую природу. Потому-то он и может сам себя гасить или усиливать (волны, складываясь, либо уменьшают размахи, либо увеличивают — смотря по взаимному расположению «горбов» и «впадин»). Выяснилась длина световых волн. Она разная у лучей разного цвета — от 4 до 8 микрон.
В период становления оптики физики сумели измерить и скорость света. Она получилась фантастически огромной — 300000 километров в секунду.
Зная длину волны и скорость света, нетрудно было подсчитать, сколько световых волн ежесекундно проходит через какую-нибудь точку. Получилось очень большое число. Частота света составляет, как выяснилось, миллиарды колебаний в секунду.
Волновая природа света не выглядела странной. Волны в нашем мире отнюдь не редкость, они гуляют по воде, в воздухе разносят звуки. И всем была известна несомненная, как тогда казалось, истина: существовать волны могут только в какой-либо среде. Водяные — в воде, звуковые — в воздухе или в любом другом упругом веществе. Переносятся волны колебаниями частичек среды. Раскачиваясь, частички толкают или увлекают своих соседей — вот и бежит волна, бежит обязательно по чему-то способному вибрировать или качаться — по струне, по воде, по воздуху.
Вне среды, в абсолютной пустоте, где нечему колебаться, никаких волн быть не может — так считали все.
Рассуждая в этом духе, оптики решили: раз свет — волны, значит, есть и среда, в которой они распространяются. Среда эта пронизывает пространство, она — во всей Вселенной (потому что иначе до нас не дошло бы сияние звезд). Она остается нетронутой даже в полной пустоте (иначе бутылки, из которых выкачан воздух, стали бы непрозрачными). Короче говоря, если уж наш мир — аквариум, то он не может быть пуст. Он заполнен тончайшей светоносной материей, которой физики дали романтическое имя — эфир. И думали, что, словно рыбы в воде, плавают во всемирном океане эфира планеты и звезды, дома и деревья, и люди, и физические приборы.
Пусть так. В наш мир, который все еще представляется безграничным «аквариумом», вместо коды налит невидимый и неощутимый эфир.
В домашнем аквариуме вода не движется относительно стенок и дна. Эфир во всемирном аквариуме должен тоже покоиться — иначе световые лучи, приходящие к нам от звезд, не были бы столь прямолинейны и постоянны. Они «болтались» бы и гнулись, как на ветру. Изображения планет в телескопе плясали бы, смещались и не соответствовали бы их действительным местам. Небесная механика не сумела бы делать предсказаний.
Но небесная механика действовала превосходно, ее предсказания сбывались одно за другим. И физики сделали вывод, что светоносный эфир незыблем во Вселенной. Вот где могла отыскаться полная, ненарушаемая неподвижность!
Собственно говоря, введение эфира избавило нас от вульгаризации со всемирным «аквариумом». Я выдумал его, чтобы пояснить неизменную и вечно неподвижную систему отсчета расстояний ньютоновского мира (помните— «до дна», «до смежных стенок»). Но как только в «аквариум» налит эфир, сам «аквариум» можно убрать — абсолютная неподвижность останется воплощенной в эфире. Словом «аквариум» был у нас вроде лесов, и, построив здание-эфир, мы вправе со спокойной совестью устранить леса.
Неподвижную систему отсчета можно мысленно «привязать» прямо к эфиру. И относительно эфира отсчитывать абсолютное движение. Так сделать надежнее всего, потому что звезды, на которые раньше я «ставил» всемирный «аквариум», — опора шаткая. Они движутся, и иные — весьма быстро.
Физики XIX века ликовали. Светоносный эфир представлялся превосходной находкой. Он был желанен и оптику и механику.
Как же обнаружить эфир?
Это все равно что обнаружить с движущегося поезда наружный воздух. Я высовываюсь в окно — и чувствую ветер. Значит, воздух есть, все в порядке.
Земля как поезд, она ведь движется по орбите вокруг Солнца. А эфир как воздух. С Земли даже не надо «высовываться». Если эфир ее пронизывает, то эфирный ветер должен ощущаться на планете всюду. Для жителей Земли эфирного безветрия тогда быть не может, как не может быть воздушного безветрия для быстро едущего мотоциклиста.
Однако легко поверить, что люди слишком «толстокожи», чтобы ощущать эфирный ветер. Осязание тут отказывает. Как же быть? Существование воздушного ветра можно установить на слух — измеряя скорость звука в воздухе. Я стою в поле и кричу «ау» своему приятелю, стоящему в поле за километр от меня. Он отвечает: «Ого». Пока мое «ау» долетело до приятеля, прошло, допустим, три секунды. А его «ого» летело до меня четыре секунды. Значит, ветер есть. И дует он против крика моего приятеля, относя звуковые волны назад и поэтому уменьшая их скорость относительно Земли.
Разумеется, крикунам не обязательно стоять в поле и определять скорость ветра. С тем же успехом они могут кричать свои «ау» и «ого», находясь в безветренную погоду в разных концах длинного поезда, состоящего из порожних платформ. Мчась в неподвижном воздухе, они будут чувствовать ветер. И, определив с помощью звуковых сигналов скорость ветра, они тем самым узнают скорость поезда.
Может быть, заменить звук светом и испробовать, не сносятся ли световые сигналы эфирным ветром, измерив скорость света вдоль и против движения Земли по орбите? Разные выйдут скорости — значит, есть эфир и эфирный ветер. Такой рисуется программа эксперимента. Легко ли ее исполнить?
Очень это не просто. Трудность — в огромной величине скорости света: 300 000 километров в