— он продолжал свои опыты. Вновь и вновь лазал на башню, старался узнать, зависит ли быстрота падения не только от веса, но и от материала, от формы тел. Этой проблеме была посвящена серия экспериментов. Круглые ядра, продолговатые пули, железные, медные — все летело с башни вниз. Экспериментировать было трудно: слишком скоро брошенные тела оказывались на земле.
Зато у себя дома в рабочем кабинете, который стал первой на нашей планете физической лабораторией, Галилей ухитрился замедлить падение. Оно стало доступно и взгляду и тщательному, неторопливому изучению.
Ради этого Галилей построил длинный (в двенадцать локтей) наклонный желоб. Изнутри обил его гладкой кожей. И спускал по нему отшлифованные шары из железа, бронзы, кости.
Делал, например, так.
К шару, находившемуся в желобе, прикреплял нитку. Перекидывал ее через блок, а к другому ее концу подвешивал гирю, которая могла опускаться или подниматься отвесно. Гирю тянула вниз ее собственная тяжесть, а вверх, через нить, — шарик из наклонного желоба. В результате шарик и гиря двигались так, как хотел экспериментатор — вверх или вниз, быстро или медленно, смотря по наклону желоба, весу шарика и весу гири. Шарик и гиря могли, таким образом, перемещаться под действием силы тяжести. А это и было падение. Правда, не свободное, искусственно замедленное.
Сперва Галилей отыскал закон устойчивого состояния этой системы: вес гири, помноженный на высоту поднятого конца наклонного желоба, должен быть равен весу шарика, помноженному на длину желоба. Так появилось условие равновесия системы — галилеевский закон наклонной плоскости.
О падении и его секретах еще ничего не было сказано.
Неподвижность изучать нетрудно: она постоянна во времени. Проходят секунды, минуты, часы — ничто не меняется. Весы да линейки — вот и все, что нужно для измерений[1]
Затем Галилей стал изучать движение шаров. Этот- то день и был днем рождения физики (увы, календарная дата его неведома). Потому что именно тогда подвергся первому лабораторному исследованию процесс, изменяющийся во времени. Пошли в ход не только линейки, но и часы. Галилей научился отмеривать длительность событий, то есть исполнять главную операцию, присущую всякому физическому эксперименту.
Поучительна легенда о лабораторных часах Галилея.
В то время нельзя было купить в магазине секундомер. Даже ходиков еще не изобрели. Галилей же вышел из положения совсем особым образом. Он отсчитывал время ударами своего пульса, потом, как уверяют давние биографы, устроил неплохие лабораторные часы из неожиданных составных частей: ведра, весов и хрустального бокала. В дне ведра проделал дырочку, через которую текла ровная струйка воды. По солнцу замечал, сколько унций воды вытекало за час, и затем высчитывал вес воды, вытекающей за минуту и за секунду.
И вот опыт. Ученый опускает в желоб шар и тут же подставляет под струйку бокал. Когда шар достигает заранее намеченной точки, быстро отодвигает бокал. Чем дольше катился шар, тем больше натекло воды. Ее остается поставить на весы — и время измерено. Чем не секундомер!
«Мои секунды мокрые, — говорил Галилей, — но зато их можно взвешивать».
Соблюдая элементарную строгость, стоит, впрочем, заметить, что эти часы не так просты, как может показаться. Вряд ли Галилей учитывал уменьшение давления (а значит, и скорости) водяной струи с понижением уровня воды в ведре. Этим можно пренебречь, лишь если ведро очень широкое, а струйка — узкая. Возможно, так оно и было.
Галилеевский рабочий кабинет — прародитель всех нынешних роскошных физических лабораторий и институтов. А потому, глядя с уважением на современные циклотроны и реакторы, не лишне вспомнить, как в старой Пизе катились по желобу шары, спускались на нитях гири, текли водяные «стрелки» часов[2]. Эта большая работа, повторенная потом в тысячах и тысячах лабораторий — научных, университетских, школьных, — была первой классической серией экспериментов с движением тел под действием тяжести.
Из множества опытов Галилей отыскал главную особенность такого движения —оно равноускоренное. Чем дальше от начала пути, тем быстрее, причем скорость нарастает в равные промежутки времени строго одинаковыми порциями. Галилей первым понял, что, кроме скорости, у падающих камней и скатывающихся шаров есть еще ускорение — скорость изменения скорости. Желоб горизонтален — ускорения нет, есть только скорость. Шар катится равномерно. Появился наклон, и шар ускоряется. Круче наклонен желоб — больше ускорение. Это нехитрое понятие — замечательное открытие науки XVI века. Потому что прежде движение умели различать только по скоростям.
И еще Галилей вывел формулу пути равноускоренного движения. Вот она, хорошо знакомая нашим семиклассникам
Путь S равен половине ускорения а, помноженной на квадрат времени t. Отличная формула! Знаешь время и ускорение — легко подсчитать путь, пройденный катящимся по желобу шаром. Знаешь путь и ускорение — вычислишь время. Знаешь время и путь — вычислишь ускорение. В том числе и таинственное ускорение силы тяжести, которое с удивительным постоянством гонит вниз падающие сосульки и пушечные ядра.
В самом деле: измерь высоту Пизанской башни (S) и засеки длительность падения с нее ядра (t), а потом подставь полученные величины в нашу формулу. В аккуратном опыте ускорение силы тяжести у поверхности Земли для всех тел неизменно составляет 9,81 метра в секунду за секунду. Оно обозначается буквой g. Это то самое «же», о котором теперь так много говорят космонавты. Галилей этой цифры, правда, получить не смог. Слишком уж несовершенны были приборы. Однако было окончательно сделано важнейшее заключение: не только вес, но и материал падающего тела на быстроту его падения не влияют. Если что и замедляет падение, так это воздух (или трение о желоб). Догадка по тому времени замечательная. Лишь значительно позднее, с изобретением воздушных насосов, она была подтверждена опытом.
По подсказкам Галилея мы выяснили, как падают тела: все с одним и тем же ускорением, независимо от веса и всего прочего. Но житейский опыт уверяет нас: именно вес заставляет тело падать. Если так, то получайте каверзный вопрос: тело, которое ничего не весит, и падать не должно? Верно?
Давайте сообразим. И пока сделаем вид, что ничего не знаем о силе тяготения, действующей «через пустоту». Пусть вес — только давление на опору.
В самом деле, вес неподвижных тел всегда проявляется как давление на опору. Камень, лежащий на моей ладони, давит на нее. Гиря давит на чашку весов. Все неподвижное весомо, если поблизости находится Земля.
Убери из-под гири опору — гиря начнет падать. Почему?
Хочется сказать: она начинает падать потому, что имеет вес.
Не будем спорить против этого желания. Но спросим еще: а движущиеся тела — имеют они вес? Начнут они падать, если из-под них убрать опору?
Попробуем разобраться логически.
Альпинист, нагруженный рюкзаком, лезет на гору. Поднимается на вершину и все время ощущает вес рюкзака. При таком движении «ноша тянет». Идти с рюкзаком тяжело. Сорвешься с горной тропки — полетишь в пропасть.
Ну, а каково с рюкзаком падать, тяжело или легко? Или, скажем, такой вопрос: с каким рюкзаком легче падать, с тяжелым или легким? Сохранится вес у падающего рюкзака? И у падающего альпиниста?
Ради опыта альпинист самоотверженно спрыгивает с горы. Низвергается вниз. Но... если альпинист и его рюкзак сохранят в падении свой вес (как давление на опору), то выйдет несуразица.
Судите сами. Альпинист летит вниз, а рюкзак, раз он сохраняет вес и, значит, давит на альпиниста сверху, подгоняет его падение. Без рюкзака он падал бы медленнее. Тяжелее рюкзак — вроде бы быстрее