Объяснение кажется Клио убедительным и утешительным, потому что неучи-болельщики продолжают кричать и возмущаться (доносятся возгласы «Долой жуликов!», «Судьи подыгрывают землянам!»). Значит, и сейчас, во время новых забегов на стадионе, релятивистские эффекты налицо и, следовательно, стадион движется, карусель вращается. Чем не доказательство?![14]
Клио доволен. Он восхищен своей сообразительностью. И успокоен, уверен, что в наплывшей темноте с каруселью ничего не произошло. В пылу самодовольства он забывает, что допустил непозволительную вольность— кощунственно пренебрег эйнштейновским принципом эквивалентности инерции и тяготения.
Не мудрено, что хвастливое ликование длится недолго.
Облако космической пыли исчезает, снова зажигаются звезды — и Клио, к своему ужасу, видит: они неподвижны! Карусель остановилась. И под стадионом торчит, как он и боялся, неведомо откуда взявшаяся злосчастная планетка, маленькая, да удаленькая — сверхплотная и создавшая поэтому достаточное тяготение на стадионе. И, следовательно, именно это «настоящее» тяготение вызвало на стадионе замедление времени и уменьшение расстояний. Так же, как раньше эти эффекты вызывало вращение карусели.
Как видите, принцип эквивалентности опять оказался справедливым — в масштабах стадиона поле сил инерции, вплоть до тончайших своих особенностей, повторено гравитационным полем. Не сумел хитрый Клио обойти Эйнштейна. Не сумел отличить вращение от покоя в условиях тяжести.
А все потому, что сей эпизодический персонаж, во- первых, остался личностью, склонной к нечестным манипуляциям, а во-вторых, знает теорию относительности только до того места этой книжки, в котором он очередной раз появляется.
Принимаю как должное упреки в чрезмерной фантастичности и искусственности вышеизложенного мысленного эксперимента. Но зато из него следуют поучительные морали, с которыми, как мне кажется, теперь будет легко согласиться.
Первая мораль. Не только скорости, но и ускорения ведут к изменениям времени и пространства в движущихся системах отсчета (с точки зрения наблюдателей, движущихся иначе). Такова лодка вращающейся карусели. Центростремительная сила все время ее сворачивает с прямого пути, отчего появляется центробежная сила инерции. Поэтому можно сказать короче: в поле инерционных сил происходит изменение времени и пространства.
Любопытно, что это следует только из частной теории относительности, которая, вообще говоря, применима лишь к системам отсчета, движущимся прямолинейно. Тем не менее вывод строг, его много раз приводил сам Эйнштейн.
И вторая мораль. Если инерция изменяет время и пространство, то, не желая повторять ошибки злополучного Клио, мы смело применяем принцип эквивалентности и сразу заключаем: тяготение тоже обязано изменять время и пространство. Раз, по принципу эквивалентности, сила инерции в локальных масштабах неотличима от тяжести, это должно касаться всех и всяческих проявлений инерционных и гравитационных сил. Тут уже действует общая теория относительности.
Конечно, у Эйнштейна на пути к этому удивительному заключению не было никаких спортивных и космических небылиц. Была строгая логика — сухая, трудная и, быть может, скучная для людей, мало склонных к предельно абстрактному мышлению. Было обобщение идей частной теории, соединение их с принципом эквивалентности, и в итоге родилось предсказание: в гравитационном поле время и пространство деформированы.
В поворотных местах популяризаторского сюжета этой книжки я следую доброй пословице: «Повторенье — мать ученья». На этом основании вкратце вспомним логическую цепочку предыдущих глав.
В малых масштабах подмечена неразличимость инерции и тяжести (Людмила, обманутая Черномором, и т. д.). Отсюда провозглашен принцип эквивалентности инерции и тяготения. Далее выяснено, что в поле сил инерции происходит деформация времени и пространства (споры болельщиков на сотой Олимпиаде). По принципу эквивалентности последовал вывод: в поле тяжести тоже происходит деформация времени и пространства (казус с механиком Клио).
Так сделан немаловажный шаг — отыскан физический признак, присущий в равной мере силам инерции и тяготению: тут и там для внешнего наблюдателя неизбежно изменение времени и пространства.
Пока это заключение законно только в локальных масштабах, где безоговорочно справедлив принцип эквивалентности, то есть для ограниченных объемов или малых промежутков времени (вспомните возражение Маленького Принца). Для планеты в целом такой вывод сделать нельзя, потому что Земля имеет центр масс. Полное земное тяготение, благодаря его центральности, сразу везде и надолго невозможно повторить неинерциальным движением или, наоборот, уничтожить его свободным падением системы.
Вышеизложенное известно из предыдущих глав.
А вот новое.
Выдвигается гипотеза: раз в локальных, местных явлениях тяготение, сведенное к инерции, изменяет пространство и время, то и в крупных масштабах, где сведение невозможно, должна тем не менее происходить какая-то деформация пространства и времени.
Гипотеза эта напрашивается сама собой. Ведь полное тяготение Земли складывается из сил тяготения, исходящих от ее маленьких частей. В каждой части пространство и время изменяются, значит, и во всех частях вместе — тоже.
Из сугубо локальных явлений извлечено, таким образом, заключение совершенно универсальное: наша планета всей своей массой деформирует пространство и время.
И Солнце, и любая звезда, и любая галактика.
Всякая масса вещества обязана обладать поразительной способностью — способностью искривлять мир.
Что же это такое — искривлять мир?
Дабы легче постичь это, еще раз сосредоточьтесь и следующие три главы прочтите с усиленным вниманием.
Глава 21. ВДОЛЬ ПОВЕРХНОСТИ
Геометрия — самая древняя в обширной семье математических наук. И чуть ли не самая мудрая. Учителя единодушно признают ее лучшим пробным камнем математических способностей — она очень глубока по мысли, изящна, безупречно стройна.
Юный Эйнштейн, когда ему в руки попалась тоненькая геометрическая книжечка, был восхищенно удивлен открывшимся волшебством логического творчества: шаг за шагом из простейших постулатов вырастала гармония лемм и теорем, все более запутанных, тонких, подчас неожиданных. Великий физик назвал эту книжечку в числе отправных пунктов своего марафонского бега от удивлений.
Да, геометрия достойна высших похвал. Может быть, даже поэм и од.
Жаль, что их, кажется, еще не успели сочинить.
Зато на геометрические темы придумано порядочно поговорок и пословиц. Есть даже анекдоты.
Мне почему-то страшно нравится тот, где некий машинист на паровозе кричит кочегару:
— Эй, кочегар, кидай в топку кривые дрова! Въезжаем на поворот!
Эти фразы радуют своим несказанным идиотизмом.
Между тем изощренный физик-теоретик сумеет дать им кое-какое разумное истолкование. Чтобы