Выводы выглядят вполне разумными (до некоторого предела, впрочем, который в своем месте — еще очень не скоро — будет отмечен). И здесь четко проступает роль системы отсчета в изучении движения.

Теперь важное определение. Постарайтесь его запомнить.

Кастрюля, которая после опыта с копьем выглядит невращающейся и неускоряющейся, плюс часы, по которым зафиксировано постоянство скорости копья, есть пример инерциальной системы отсчета. В ней движение по инерции равномерно и прямолинейно. Значит, исполняется первый закон Ньютона.

Все остальные системы отсчета физики называют неинерциальными.

Опыт Леона Фуко

За неинерциальной системой отсчета совсем не обязательно отправляться в космос. Не требуется никаких межзвездных кастрюль и «летающих тарелок». Можно остаться на Земле, пойти в городской сад и покататься на «колесе смеха» — горизонтальном скользком вращающемся диске. Вы на себе почувствуете неинерциальность системы отсчета, связанной с диском, — очень быстро окажетесь отброшенным прочь от центра вращения.

Можно поехать в Ленинград и посетить Исаакиевский собор. Там ясно видно, что и система отсчета, связанная с Землей, тоже неинерциальна.

Дорого бы дал Галилей за идею опыта, поставленного в 1851 году французским физиком Леоном Фуко. На протяжении нескольких минут этот опыт просто и наглядно доказывал то, что великий итальянец стремился доказать всю жизнь — вращение земного шара. Теперь знаменитый эксперимент Фуко постоянно демонстрируется в Исаакиевском соборе.

На длинном (98 метров) подвесе раскачивается массивный шар. В каждом качании он летит из края в край обширного помещения над полом, расчерченным четкими прямыми линиями. Маятник Фуко — вроде копья, которое мы с вами швыряли в космосе. Разгоняется он, правда, земным тяготением, но благодаря инерции сохраняет плоскость своих колебаний. Земля же, медленно поворачиваясь, сдвигает из-под нее пол собора. Летящий шар чуть-чуть сворачивает от прямых линий, начерченных на полу. Через две-три минуты накапливается весьма заметное отклонение.

Простейший вывод: Земля вертится.

Более тонкий вывод: система отсчета, связанная с земным шаром, неинерциальна.

Но справедливы ли в этом случае уравнения механики? Можно ли применить формулу второго закона? Действуют ли на маятник Фуко (или лучше все-таки на наше «космическое копье» — дабы не мешало притяжение Земли) какие-то силы?

Да. Пусть второй закон торжествует: раз есть ускорения, значит, есть и силы. Эти силы, под влиянием которых наше копье «само» ускоряется, тормозится, сворачивает вбок в неинерциальной системе отсчета, принято называть силами инерции.

С такой точки зрения на колесе смеха вы оказались во власти центробежной силы инерции. Она-то и согнала вас с диска. А маятник Фуко был подвержен силе инерции Кориолиса (по имени физика, который ее впервые изучил). Она действует на тела, движущиеся во вращающейся системе отсчета. Благодаря ей маятник Фуко и смещает в такой системе плоскость своих качаний.

Конечно, вы можете покинуть вращающуюся Землю и рассматривать качания маятника Фуко в какой-то не- вращающейся, инерциальной системе отсчета (для малых промежутков времени в качестве ее опоры годится хотя бы Луна). Тогда вы вправе заявить, что смещения пола собора вызваны никакими не силами, а именно вращением земного шара. Однако этот бесспорный факт не делает силы инерции фиктивными, что иногда неосторожно говорят. Коль уж явление разыгрывается в неинерциальной системе отсчета, силы инерции присутствуют обязательно и бывают порой очень эффективны — скажем, рвут на части быстро вращающийся маховик.

Видите: «пассивное непослушание», каким выглядело свойство инерции в инерциальной системе отсчета, для неинерциальной обернулось активным действием.

И еще. Обратите, пожалуйста, внимание на существенную деталь: силы инерции в равной мере ускоряют тела разной массы. Когда над дном нашей вращающейся и ускоряющейся «космической кастрюли» летят рядом свободно брошенные ядро и пуля, пути их и скорости меняются относительно кастрюли совершенно одинаково. При взгляде извне это ничуть не удивительно. Ведь кастрюля-то одна, она вращается или ускоряется одинаково и для ядра, и для пули. Все же подмеченный сейчас факт очень многозначителен. В нем раскрывается некое (пока чисто формальное) сходство между инерцией и тяготением (тяжесть столь же «равнодушна» к массам тел, когда сообщает им ускорение). Придет время, об этом сходстве мы поговорим побольше и поподробнее.

Действие без противодействия

И, наконец, самое, на мой взгляд, странное качество сил инерции. Это единственный вид сил, не подчиняющийся, оказывается, третьему закону Ньютона. Когда брошенное копье сворачивает в сторону от прямой, проведенной по дну вращающейся «кастрюли», оно не воспринимает никакого противодействия, потому что ни с чем как будто не связано.

Тут стоит вспомнить, что в прошлом веке австрийский физик Эрнст Мах сделал на этот счет одно очень заманчивое предположение. Вот что он допустил (без всякого доказательства): через свойство инерции любое тело соединено какими-то невидимыми «нитями» или «пружинами» со всей, пусть даже безмерно удаленной, материей Вселенной. Бесчисленные звезды — это, как говорил Мах, «не бумажные фонарики». Разбросанные тут и там в безграничном мире, они каким-то способом сообща действуют на каждую звезду или планету, на каждый камень, копье, пушинку — и заставляют их хранить покой или равномерное прямолинейное движение относительно инерциальных систем отсчета.

Или, если хотите, сообщают им ускорения в неинерциальных системах, порождая силы инерции.

Окажись этот «принцип Маха» справедлив, силы инерции стали бы подчинены третьему закону механики. Как и все прочие силы. Действие звезд на копье — вот что сдвигало бы его с прямого пути в неинерциальной системе отсчета. И вся материя мира поворачивала бы плоскость качаний маятника Фуко над полом Исаакиевского собора. Наоборот, копье, «привязанное» принципом Маха к звездам, оказывало бы при ускорениях противодействие на звезды.

Выходит, бросая мяч, вы толкали бы в обратную сторону всю Вселенную? Вроде того. Это, пожалуй, приятно — быть в силах толкнуть весь мир!

Но я снова вынужден предостеречь своих читателей от поспешности. Верен или неверен принцип Маха, можно будет судить только в самом конце этой книжки. Все-таки я не стерплю и уже сейчас скажу вам: увы, в современной науке принципу Маха места пока не нашлось. Надеюсь, это признание не охладит читательский интерес. Я ведь старался, чтобы сильнее всего вы удивились не инерции, а тяжести. Чуду падающих ядер и пуль, пушинок и сосулек. Именно от этого удивления нам предстоит попытаться убежать.

Таким образом, об основаниях классической механики сказано уже довольно много. Разобрано поведение падающих тел, объяснены все три закона, отмечены некоторые тонкости.

Пора кое-что сказать о конкретных делах ньютоновской механики, о ее замечательных достижениях в объяснении природы.

Глава 4. МОГУЩЕСТВО МЕХАНИКИ

Дорога в школу

Я думаю, древнегреческие школьники были ничуть не глупее современных пионеров, даже из числа отличников. И учителя у них были, быть может, неплохие. Вся разница в уровне знаний. Учителя помнили слова своих учителей, которые еще очень мало знали, еще не умели смотреть в глубь вещей.

Видя быстро летящее копье, заброшенное сильной рукой, хотелось сказать, что сила рождает скорость. Так и говорили, и учили, и заучивали. А это была ошибка, ибо сила дает не скорость, а ускорение.

Видя лист, падающий медленнее шишки, обобщили это на все тела и объявили, что тяжелое падает быстрее легкого, — снова ошибка.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату