3. Глаз

Глаз часто сравнивают с фотоаппаратом. Более уместно было бы сравнить его с телевизионной камерой, установленной на треноге, с автоматической системой слежения — машиной, которая самофокусируется, автоматически подстраивается к интенсивности света, имеет самоочищающуюся линзу и присоединена к компьютеру со столь развитыми возможностями параллельной обработки информации, что инженеры еще только начинают обсуждать сходные стратегии для конструируемой ими аппаратуры. Гигантская работа по преобразованию света, падающего на две сетчатки, в осмысленную зрительную сцену часто странным образом игнорируется, как будто все необходимое нам для того, чтобы видеть, — это изображение внешнего мира, четко сфокусированное на сетчатке. Хотя получение резких изображений и важная задача, она скромна по сравнению с работой нервной системы — сетчатки и мозга. Как мы увидим в этой главе, вклад сетчатки уже сам по себе впечатляет. Преобразуя свет в нервные сигналы, она начинает извлекать из окружающей среды то, что полезно, и отбрасывать то, что излишне. Никакое человеческое изобретение, включая управляемые компьютером камеры, пока еще не может соперничать с глазом. Эта глава посвящена главным образом нейронной части глаза — сетчатке, но я начну с краткого описания глазного яблока, аппарата, который содержит сетчатку и создает на ней четкое изображение внешнего мира.

Глазное яблоко

Совокупная функция несетчаточных частей глаз заключается в том, чтобы обеспечить на двух сетчатках сфокусированное четкое изображение внешнего мира. Каждый глаз устанавливается в глазнице в определенное положение шестью маленькими наружными мышцами, упоминавшимися в главе 2. То, что каждый глаз имеет именно шесть мышц, не случайно; они разбиваются на три пары, причем мышцы каждой пары работают в противофазе, обеспечивая движения в трех ортогональных (перпендикулярных) плоскостях. Для обоих глаз задача слежения за объектом должна выполняться с точностью до нескольких угловых минут — иначе видимое изображение будет двоиться. (Чтобы понять, насколько такое двоение может быть мучительным, попробуйте посмотреть на что-нибудь, надавив на край одного из глаз указательным пальцем.) Столь точные движения требуют для своей реализации набора тонко настроенных рефлексов, включая те, которые контролируют положение головы.

Роговица (прозрачная передняя часть глаза) и хрусталик вместе образуют эквивалент линзы фотоаппарата. Приблизительно две трети общего преломления света, необходимого для фокусировки, происходит на границе воздух — роговица, где свет входит в глаз. Оставшуюся треть фокусирующей способности реализует хрусталик, но его главная задача — обеспечить необходимое регулирование для фокусировки на объектах, расположенных на разных расстояниях от глаза. Фокусируя фотоаппарат, мы изменяем расстояние от линзы до фотопленки; в глазу же изменяется не расстояние от хрусталика до сетчатки, а форма эластичного студенистого хрусталика — путем натяжения или ослабления прикрепленных к его краю сухожилий таким образом, что для близких объектов он делается более выпуклым, а для удаленных — более плоским. Эти изменения формы осуществляет совокупность радиальных мышц, называемых цилиарными мышцами. (Когда мы достигаем примерно 45 лет, хрусталик становится более жестким и мы постепенно утрачиваем способность фокусировать. Чтобы обойти это существенное возрастное неудобство, Бенджамин Франклин изобрел бифокальные очки.) Рефлекс, приводящий к сокращению цилиарных мышц и делающий хрусталик более выпуклым, определяется зрительным входом и тесно связан с рефлексом, контролирующим сопутствующий поворот глаз.

Рис. 18. Офтальмолог, рассматривая глазное дно, видит нечто сходное с этим фотоснимком нормальной сетчатки. Сосок зрительного нерва расположен слева; здесь в сетчатку входят артерии и из нее выходят (более темные) вены. Темно-красная зона у самого края справа — макула; в центре этой области располагается центральная ямка, на снимке не показанная. Темная зона вверху слева — нормальная меланиновая пигментация.

Рис. 19. Глазное яблоко и мышцы, контролирующие его положение. Роговица и хрусталик фокусируют световые лучи на заднюю стенку глаза. Хрусталик регулирует фокусировку близких и удаленных объектов — его выпуклость соответственно увеличивается и уменьшается.

Две другие совокупности мышечных волокон изменяют диаметр зрачка и таким образом регулируют количество света, поступающего в глаз, точно так же, как в фотографическом аппарате это делает диафрагма. Система радиальных волокон, напоминающих спицы колеса, расширяет зрачок; другие, кольцевые волокна сужают его. Наконец, самоочистка передней поверхности роговицы достигается морганием век и смазкой из слезных желез. Роговица обильно снабжена нервами, чувствительными к прикосновению и боли, — вот почему малейшее раздражение пылинками вызывает рефлекс, который ведет к морганию и усиленному выделению слез.

Рис. 20. Свет входит в глаз через прозрачную роговицу, которая вносит наибольший вклад в преломление световых лучей. Белое пятно на зрачке — отражение света.

Сетчатка

Вся сложная суперструктура, описанная выше, существует для того, чтобы могла работать сетчатка, которая сама является удивительной структурой. Она преобразует свет в нервные сигналы, позволяет нам видеть в условиях от звездной ночи до солнечного дня, различает длины волн, что дает нам возможность видеть цвета, и обеспечивает точность, достаточную, чтобы заметить человеческий волос или соринку с расстояния в несколько метров.

Сетчатка — это часть мозга, отделившаяся от него на ранних стадиях развития, но все еще связанная с ним посредством пучка волокон — зрительного нерва. Подобно многим другим структурам центральной нервной системы, сетчатка имеет форму пластинки, в данном случае толщиной приблизительно в четверть миллиметра. Она состоит из трех слоев тел нервных клеток, разделенных двумя слоями синапсов, образованных аксонами и дендритами этих клеток.

Слой клеток на задней поверхности сетчатки содержит светочувствительные рецепторы — палочки и колбочки. Палочки, значительно более многочисленные, чем колбочки, ответственны за наше зрение при слабом свете и отключаются при ярком освещении. Колбочки не реагируют на слабый свет, но ответственны за способность видеть тонкие детали и за цветовое зрение.

Число палочек и колбочек заметно изменяется в разных частях сетчатки. В самом центре, где способность нашего зрения различать тонкие детали максимальна, имеются только колбочки. Эту лишенную палочек зону диаметром примерно полмиллиметра называют центральной ямкой. Колбочки имеются по всей сетчатке, но наиболее плотно упакованы в центральной ямке.

Поскольку палочки и колбочки расположены на задней поверхности сетчатки, поступающий свет должен пройти через два других слоя, чтобы их стимулировать. Мы точно не знаем, почему сетчатка устроена таким странным образом — как бы перевернута. Одна из возможных причин — то, что позади рецепторов находится слой клеток, содержащих черный пигмент меланин (он имеется также в коже). Меланин поглощает прошедший через сетчатку свет, не давая ему отражаться назад и рассеиваться внутри глаза; он играет ту же роль, что и черная окраска внутренности фотокамеры. Клетки, содержащие меланин, способствуют также химическому восстановлению светочувствительного зрительного пигмента, который

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату