мантия (до 500–600 км), переходный слой (до 800–900 км). Верхняя (мантия сложена очень плотными компактными кристаллическими породами ультраосновного состава. Сейсмическая добротность как по продольным, так и по поперечным волнам, а также вязкость вещества на 2–3 порядка превосходит соответствующие параметры в литосфере Земли. В отличие от Земли, где скорости сейсмических волн в литосфере в среднем растут. На Луне они растут только в коре, а в верхней мантии остаются постоянными или слегка ослабевают. Это объясняется тем, что влияние температур (до 500–600 °C) превосходит эффект давления (15 тыс. атм, что соответствует низам земной коры платформенных областей).

Из 250-километровой толщи оливинов верхней мантии, как это следует из теоретических геохимических расчетов, могла выплавиться полевошпатовая кора мощностью 50–60 км.

В средней мантии Луны происходит скачкообразное уменьшение скорости продольных, и в особенности поперечных волн. За счет этого резко увеличивается упругий параметр — коэффициент Пуассона. Высокий коэффициент Пуассона означает уменьшение компактности пород, приближение их к аморфному состоянию. Его значение для средней мантии (0,35) такое, как в лунном реголите, а также глиноподобных веществах. Эта особенность средней мантии Луны позволяет некоторым сейсмологам полагать, что здесь находится первозданное метеоритное вещество, которое никогда полностью не переплавлялось.

В средней мантии до глубины 500–600 км продолжает все более заметно уменьшаться скорость поперечных волн, а также сейсмическая добротность. Давление здесь 25 кбар (как на границе кора — мантия в горных районах Земли) и температура 1000–1100 °C (как в районе Байкальского рифта).

Гидростатистическая неуравновешенность фигуры и смещение центра масс свидетельствуют о существовании горизонтальной неоднородности структуры Луны, прежде всего в ее литосфере. Аномалии силы тяжести над круглыми морями Луны могут быть вызваны блоками вещества повышенной плотности, залегающими в верхней мантии Луны.

Горизонтальная неоднородность плотностей приводит к возникновению напряжений, которые и вызывают тектонические лунотрясения на глубинах 25 — 300 км. Эти напряжения (100– 200 кг/см2) в десятки раз меньше горизонтальных сил, определяющих тектоническую активность литосферы Земли, поэтому тектонические лунотрясения столь слабы по сравнению с землетрясениями.

Еще большие неоднородности намечаются в низах средней мантии. Этот слой, по существу, можно выделить как особый слой перехода от литосферы к центральной зоне Луны. Здесь, в интервале глубин от 600 до 800–900 км, сохраняется высокий коэффициент Пуассона и происходит резкое изменение физических свойств вещества Луны: на 2 порядка уменьшается электрическое сопротивление, в 3 раза уменьшается добротность для продольных волн и в 100 — 1000 раз — вязкость. Переход от литосферы к центральной зоне происходит постепенно. Поэтому на записях лунотрясений отсутствуют фазы волн, отраженных от подошвы литосферы.

К переходной зоне приурочены очаги приливных лунотрясений. Большой разброс глубин очагов и их концентрация в двух узких «сейсмических швах» планетарного размера подчеркивают сложный характер перехода от литосферы к астеносфере Луны и неоднородность строения этой зоны. Повторяемость формы записи и малая энергия приливных лунотрясений увязываются с представлением о том, что средняя мантия Луны состоит из однородных блоков относительно небольшого размера.

В свете новых знаний о глубинном строении Луны картина подготовки лунотрясений выглядит так. Под действием сил притяжения Земли и Солнца в Луне возникают большие перепады приливных напряжений. Они концентрируются на контакте жесткой внешней и разогретой внутренней зон Луны. Этому способствует сложный, контрастный рельеф переходной зоны. Возможно, положение эпицентров лунотрясений отражает направление конвективных потоков вещества в астеносфере.

В моменты увеличения притяжения Луны Землей и Солнцем в переходную зону импульсами впрыскиваются горячие флюиды и газы. Они образуют своего рода «смазку», которая в дальнейшем облегчает движения блоков по разрыву в момент лунотрясения. Размеры очагов, интервалы между сотрясениями и их энергия неплохо согласуются в рамках теории, описывающей процесс землетрясения как быстрое «вспарывание» трещин в ослабленных зонах. На Луне разрывы происходят в пределах однородных блоков плохо сцементированного материала. Поэтому от толчка к толчку так хорошо сохраняется форма колебаний в волнах из каждого очага. Из-за малых размеров блоков сотрясения не получаются большими. А их «расписание» полностью регулируется гравитационной «указкой» Земли и Солнца. Не успевают напряжения накопиться, как поступают очередные импульс напряжений и «смазка» из астеносферы — происходит слабое лунотрясение. Приливные силы Земли заставляют Луну сотрясаться часто и слабо, не давая ей накопить силы для мощного толчка.

Астеносфера и проблема ядра Луны. Внутренняя зона Луны обнаружена по резкому ослаблению энергии поперечных волн на глубинах более 800–900 км. Это соответствует уменьшению сейсмической добротности поперечных волн до величины 100–200 и продольных волн — до 500. Эффектом отсутствия поперечных волн внутренняя зона Луны напоминает внешнее ядро Земли, которое на основании этого кардинального факта считается эффективно жидким (известно, что поперечные волны не распространяются в воде). Однако она названа «астеносферой», потому что в ней давление (более 35 тыс. атм) и вязкость (1020–1021 пуаз) такие же, как в астеносфере Земли на глубинах 100–150 км. По-видимому, астеносфера Луны частично расплавлена, капли базальта в перидотите[7] плавятся при соответствующем давлении при температуре 1450–1550 °C. В астеносфере Земли также имеет место частичное плавление зерен базальта, однако поперечные волны через нее проходят, хотя скорость их падает, и энергия ослабевает. Эта разная реакция на распространение поперечных волн объясняется существенно разной мощностью астеносферы в Земле и Луне и их различной ролью в тектонической жизни этих небесных тел. Астеносфера Земли имеет толщину 100–200 км, что составляет 1/301/60 часть ее радиуса; астеносфера Луны в 10 раз мощнее, она занимает половину лунного радиуса. А если учесть, что глубже лунной астеносферы нет твердого сейсмически добротного материала, как на Земле, то оказывается, что поперечные волны в Луне долго движутся в неблагоприятных условиях, поэтому они не могут «пробиться» сквозь центральную зону на, противоположную сторону Луны.

В астеносфере Луны, как и Земли, возможны конвективные потоки частично расплавленного вещества, однако их скорость (0,1 см/год) и действие существенно иные. Они не в состоянии расколоть или передвинуть глыбы литосферного монолита, их силы хватает лишь на то, чтобы произвести в нижние горизонты литосферы инъекции разогретого вещества, на которые планета откликается слабыми сейсмическими «щелчками».

Современные представления о структуре центральной зоны Луны сугубо ориентировочные. Уменьшение скоростей продольных волн до значений 3,6–5,2 км/с не противоречит предположению о существовании в центре Луны железо-сульфидного ядра радиусом 200–400 км. Ограничение на размеры ядра дает величина относительного момента инерции Луны, которая измерена с высокой точностью (0,395 ± 0,05). Расчеты показывают, что для модели с корой, имеющей плотность 3 г/см3, и однородной мантией (плотность 3,43 г/см3) момент инерции должен быть 0,399. В случае железо- сульфидного ядра с радиусом 700 км момент инерции уменьшится до 0,391. Если же ядро чисто железное, то оно не скажется на величине момента инерции при радиусе не более 450 км. Низкие скорости продольных волн в центре Луны нельзя объяснить металлизацией силикатов мантии, для этого здесь слишком малые давления (не более 50 тыс. атм) и температуры (до 2000 К). В центре Земли температура почти такая, как на поверхности Солнца (6000 К), а давление в несколько миллионов раз больше атмосферного (3,5 · 106 атм).

Интересно посмотреть на недра Земли и Луны, сравнив их в едином масштабе глубин, т. е. отношение глубин слоев к радиусу планеты (рис. 12). Тогда наблюдается совпадение относительных глубин основных планетарных оболочек. На глубине 0,05 относительных радиусов происходит самое резкое увеличение скоростей сейсмических волн. На Луне это соответствует переходу от коры к мантии, на Земле — началу перехода от верхней к нижней мантии. На половине радиуса начинается область, где исчезают поперечные волны. При этом на Луне состав вещества, по-видимому, остается мантийным, т. е. преобладают ультраосновные силикаты. На Земле же это связано скорее всего с изменением химического состава. Наконец, в обоих небесных телах обнаружена внутренняя сфера с относительным радиусом 0,2, в основном состоящая из железа.

Вы читаете Строение Луны
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×