предполагалось, находится близко к реальной проблеме, выглядел довольно глупым. Ознакомившись с рядом руководств по нелинейным потокам и колебаниям, ученый сделал вывод, что сколько-нибудь разумному физику они мало чем помогут. Имея в своем распоряжении лишь карандаш и бумагу для вычислений, Файгенбаум решил начать с аналога простого уравнения, рассмотренного в свое время Робертом Мэем применительно к биологии популяций.
С таким уравнением — его можно записать как
Для Мэя, а затем и для Файгенбаума главное заключалось в том, чтобы произвести это простое вычисление не один раз, а повторять его бесконечно, как в «петле обратной связи». Итоги одного подсчета служили исходными данными для следующего. Для графического представления результатов парабола оказывалась незаменимой. Надо было выбрать начальную точку на оси
Казалось, нельзя было найти ничего более далекого от сложных расчетов теоретической физики. Вместо единовременного решения запутанной системы одна и та же простая операция повторялась вновь и вновь. Ставящий подобные опыты с числами скорее
Выполняя расчетную часть своих исследований, которую едва ли можно было назвать экспериментом, Файгенбаум одновременно пытался анализировать нелинейные функции с более традиционных, теоретических позиций. Даже тогда он не смог увидеть всю полноту возможностей, которые открывали уравнения. Тем не менее ученый понял, что возможности эти весьма сложны и анализ их окажется довольно трудоемким. Три математика из Лос-Аламоса — Николас Метрополис, Пол Стейн и Майрон Стейн — изучали в 1971 г. похожие алгоритмы, и теперь Пол Стейн предупредил Файгенбаума, что они заставляют поломать голову. Если анализ результатов решения простейшего уравнения оказался столь трудным, чего же было ожидать от гораздо более запутанных формул, которыми описываются
Этот эпизод из краткой летописи хаоса, история, заварившаяся вокруг одного-единственного, безобидного, на первый взгляд, уравнения, показывает, какими разными глазами ученые смотрят на одну и ту же проблему. Для биологов уравнение было знаком того, что простые системы способны на сложное поведение. Для математиков вопрос заключался в создании совокупности топологических моделей вне всякой связи с численными результатами. Они начинали процедуру «обратной связи» в определенной точке и наблюдали, как следующие одно за другим значения «прыгают» на параболе от ветви к ветви. По мере их движения справа налево ученые фиксировали наблюдаемую последовательность правостороннего (
В то время никто не догадывался, что Лоренц еще в 1964 г. рассматривал то же уравнение, пытаясь разрешить один вопрос, касавшийся климата. Вопрос этот был столь глубок, что почти никому не приходил в голову. Никто не задумывался,
Лоренцу не давал покоя еще один вопрос. Допустим, мы можем записать полный набор уравнений, управляющих погодой на земном шаре. Допустим, нам ведомы законы самого Господа Бога. Можем ли мы использовать эти уравнения для расчета среднестатистического уровня температур или осадков? Если уравнения линейные — конечно да. Но они, увы, нелинейны. И Лоренц был вынужден изучить квадратичное разностное уравнение.
Как и Мэй, Лоренц прежде всего выяснил, что происходит, если задавать разные значения параметра. При низких значениях числовой ряд достигал стабильной фиксированной точки, т. е. модель климата вела себя абсолютно предсказуемо: погода никогда не изменялась. Умеренный рост значения параметра провоцировал колебания между двумя точками, но и в этом случае система также усреднялась. За определенной чертой появлялся хаос. Поскольку Лоренц занимался проблемой климата, его интересовало не только то, приведет ли обратная связь к периодическому поведению, — он хотел знать среднее значение полученного результата. Лоренц выяснил, что среднее тоже подвержено колебаниям. При незначительном варьировании параметра оно могло изменяться довольно существенно. Аналогично и земной климат мог никогда не знать прочного равновесия.
Как математический труд статья Лоренца о климате была неудачной. Автор ничего не доказал в общепринятом смысле слова. Как физическое исследование она также не выдерживала критики, ибо не объясняла, почему такая простая модель позволяет сделать выводы о климате земного шара. Однако Лоренц был уверен в своей правоте. «Автор чувствует, что подобное сходство не простая случайность. Нам известно, что разностное уравнение охватывает многое в математике, если не в физике, описывая переходы от одного режима к другому и фактически весь феномен нестабильности». Даже двадцать лет спустя никто не мог понять, какие интуитивные ощущения подвигли Лоренца на публикацию такого отчаянно смелого утверждения в шведском метеорологическом журнале «Теллус». («„Теллус“! Да его же никто не читает!» — с горечью восклицали физики.) Лоренц стоял на пороге глубочайшего проникновения в особенности хаотических систем — слишком глубокого, чтобы сущность его можно было передать на языке метеорологии.
Продолжая изучать изменчивые лики динамических систем, Лоренц осознал, что зависимости чуть более сложные, чем квадратичная, способны внезапно обнаруживать иные типы структур. Внутри отдельно взятой системы нередко таилось не одно устойчивое решение. Если система довольно долго демонстрировала лишь один тип поведения, это не означало, что ей в равной мере не присущ совершенно иной тип поведения. Подобные системы именуют непереходными (интранзитивными); они могут находиться или в одном, или в другом состоянии равновесия, но никак не в обоих сразу, и лишь толчок извне способен заставить систему изменить свое состояние. Если искать примеры в обыденной