центру, имитируют действие механизма коррекции ошибок зрения. Прибегнув к методу изучения таких уравнений, ученый часами прогонял свою модель через компьютер, изменяя значения параметров, и строил графики поведения системы. В итоге он обнаружил и порядок, и хаос: в некоторых режимах глаз плавно прослеживал движение объекта, затем, по мере возрастания степени нелинейности, система проходила через быструю последовательность удвоения периодов, порождая беспорядок, не отличимый от того, что описывался в медицинской литературе.
Неупорядоченное поведение модели не имело никакого отношения ни к одному внешнему сигналу, являясь неизбежным следствием избытка нелинейности в системе. Некоторые из врачей, слушавших доклад Губермана, посчитали, что его модель соответствует вероятной генетической модели шизофрении. Возможно, рассуждали они, нелинейность, способную стабилизировать или разрушить систему (в зависимости от того, слаба нелинейность или сильна), допустимо уподобить какой-то из генетических черт. Один из психиатров провел аналогию с генетической обусловленностью подагры, когда повышенный уровень содержания мочевой кислоты порождает симптомы заболевания. Другие, знакомые с клинической литературой гораздо лучше Губермана, обратили его внимание на то, что рассматриваемый вопрос касается не одних лишь больных шизофренией. Целый ряд затруднений, касающихся движения зрачка, обнаруживается и у других пациентов с неврологическими заболеваниями. Периодичные и апериодичные колебания, все типы динамического поведения могли быть обнаружены в собранных медиками данных любым, кто намеревался применить инструменты хаоса.
Впрочем, не все ученые усмотрели в методике новые горизонты исследований. Отыскались и скептики, заподозрившие, что докладчик слишком упростил свою модель. Когда наступило время вопросов, их раздражение дало себя знать. «Меня интересует, чем вы руководствовались, применяя данный метод? — осведомился один из ученых. — Почему искали эти специфические элементы нелинейной динамики, в частности бифуркации и хаотические решения?»
Губерман ответил не сразу. «Сейчас я поясню и постараюсь более четко очертить цели моей работы. Модель действительно проста. В ней нет каких бы то ни было данных, касающихся нейрофизиологии, которые я мог бы обосновать. Я лишь хочу подчеркнуть, что
Другой биолог, все еще недоумевавший по поводу простоты модели Губермана, взял микрофон. Он обратил внимание докладчика на то, что в действительности в человеческом глазу четыре системы, управляющие мышцами, работают одновременно. Затем, используя множество специальных терминов, он начал описывать более реалистичный, по его мнению, способ моделирования. Он утверждал, в частности, что массой можно пренебречь, так как амплитуда колебаний глаза сильно тормозится. «Существует также еще одно затруднение, связанное с зависимостью между массой и скоростью вращения. Часть массы отстает, когда ускорение глаза очень велико. Желеобразное вещество человеческого глаза просто запаздывает, в то время как внешняя оболочка движется довольно быстро».
В воздухе повисла напряженная тишина. Губерман почувствовал, что оказался в тупике. Его не понимали. В конце концов один из организаторов конференции, Арнольд Мэнделл, психиатр, давно интересовавшийся проблемами хаоса, взял из рук Губермана микрофон: «Будучи психиатром, я хотел бы сделать некоторые пояснения. Мы только что стали свидетелями того, что происходит, когда исследователь, который занимается нелинейной динамикой и работает с системами, обладающими малым числом измерений, начинает беседовать с биологом, применяющим математический инструментарий. Мысль, что в действительности существуют всеобщие свойства систем, встроенные даже в
Выбор всегда один и тот же: вы можете сделать свою модель более сложной и более адекватной реальным условиям или же более простой и легкой в обращении. Только самый наивный ученый полагает, будто идеальной моделью является та, которая в совершенстве отражает действительность. Она будет иметь те же недостатки, что и топографическая карта, столь же огромная, изобилующая деталями, как и город, который она представляет, карта, на которую нанесен каждый парк, каждая улочка, строение и дерево, каждая выбоина, каждый городской житель — словом, каждая мелочь. Будь возможным создание такой карты, ее детальность свела бы на нет главную цель — обобщение и абстрагирование. Составители карт фиксируют лишь отдельные признаки, согласно пожеланиям заказчиков. Какова бы ни была их цель, схемы и модели должны упрощать явления в той же степени, в какой они подражают реальному миру.
Ральф Абрахам, математик из Санта-Круса, считает хорошей моделью «мир маргариток» Джеймса Е. Лавлока и Линна Маргулиса, выдвинувших гипотезу о том, что необходимые для жизни условия создаются и поддерживаются самой жизнью, в самоподдерживающемся процессе динамической обратной связи. «Мир маргариток», возможно, представляет собой наипростейшую из всех моделей, которые только можно вообразить. Он настолько прост, что порою кажется банальным. «Мы имеем три явления, — рассказывает Абрахам, — белые маргаритки, черные маргаритки и пустыню, где ничего не растет. Три цвета: белый, черный и красный. Что такая картина может рассказать о нашей планете? Казалось бы, ничего, но она объясняет, каким образом появляется тепловая регуляция и почему температура нашей планеты пригодна для жизни. Модель „мира маргариток“ ужасна, но благодаря ей мы знаем то, как на планете Земля появился биологический гомеостаз».
Белые маргаритки отражают свет, охлаждая поверхность. Черные поглощают его, понижая альбедо, или отражательную способность планеты, и таким образом согревая Землю. Но белым цветам необходима теплая погода, поскольку они расцветают преимущественно при повышении температуры, а черные «хотят» прохладного климата. Все указанные признаки могут быть выражены системой дифференциальных уравнений. Модели удается придать движение с помощью компьютера. Обширный набор начальных условий приведет к аттрактору равновесия, причем не обязательно равновесия статического.
«Это всего лишь математическое изображение концептуальной модели. Именно то, что нужно, если вы не стремитесь к высокоточному воспроизведению биологических или социальных систем, — отмечал Абрахам. — В этой модели вы лишь вводите разные значения альбедо, задаете объем белых и черных насаждений и, наблюдая за миллиардами лет эволюции, учите детей тому, как принести больше пользы в качестве управляющего планеты Земля».
Совершенным образцом сложной динамической системы, а следовательно, и пробным камнем для любого подхода к феномену сложности многие ученые признали человеческое тело. Ни один доступный физикам объект изучения не характеризуется такой какофонией неритмичных движений в макро- и микроскопических масштабах: сокращение мышц, циркуляция жидкостей, проведение импульсов по нервным волокнам. Ни одна физическая система не воплощает собой столь крайнюю степень редукционизма: каждый орган имеет особую микроструктуру и специфичный химизм. Студенты-медики только названия учат годами. До чего же трудно постичь все элементы нашего организма! Часть тела может быть вполне осязаемым и четко очерченным органом, как, например, печень, или разветвленной сетью, по которой движется жидкость, как сосудистая система. Или невидимой конструкцией, столь же абстрактной, как понятия «транспорт» или «демократизм». Такова, скажем, иммунная система с ее лимфоцитами — миниатюрный механизм кодирования и расшифровки данных о вторгающихся в организм возбудителях болезней. Бесполезно исследовать такие системы, не зная их строения и химического состава, поэтому кардиологи изучают транспорт ионов через мышечную ткань желудочков, неврологи — физическую природу возбуждения нейронов, а офтальмологи — структуру и назначение каждой глазной мышцы. В 80-х годах хаос вызвал к жизни физиологию нового типа, основанную на идее, что математический инструментарий способен помочь ученым в постижении глобальных комплексных систем, независимых от локальных деталей. Исследователи стали рассматривать человеческое тело как источник движения и колебаний, разрабатывая методы прослушивания его неоднородных пульсаций. Они улавливали ритмы, которые не обнаруживаются в неподвижных срезах на предметных стеклах микроскопов