повторяющие самих себя в различных масштабах, другие порождают устойчивые или колеблющиеся состояния. Построение подобных объектов превратилось в раздел физики и прочих естественных наук, позволяя ученым моделировать скопления частиц в кластерах, похожее на извилистые трещины распространение электрических разрядов, рост кристаллов при образовании льда и остывании металлических сплавов. Динамика таких процессов кажется азбучной — изменение формы в пространстве и времени, — но только в наше время появились инструменты, сделавшие возможным ее постижение. И теперь мы вправе спросить у физика: «Почему снежинки не похожи друг на друга?»
Кристаллики льда образуются в турбулентном воздушном потоке, который заключает в себе симметрию и случайность, особую прелесть неопределенности в шести направлениях. По мере того как вода замерзает, у кристаллов появляются тонкие кончики, которые постепенно увеличиваются; их границы становятся неустойчивыми; по краям возникают новые острия. Формирование снежинки подчиняется поразительно утонченным математическим закономерностям. Казалось невозможным предсказать, насколько быстро «вырастет» кончик кристалла, насколько узким он окажется или как часто будет разветвляться. Целые поколения ученых делали наброски и составляли каталоги образов: пластинок и столбцов, кристаллов и поликристаллов, игл и древовидных отростков. За неимением лучшего подхода авторы научных трудов упражнялись в классификации кристаллов.
Теперь уже известно, что рост окончаний кристалла, дендритов, сводится к проблеме нелинейных неустойчивых свободных границ, в том смысле, что модели должны отслеживать динамические изменения сложных извилистых границ. Когда процесс отвердения идет от поверхности внутрь кристалла, как в ледяном желобе, граница, как правило, остается стабильной и плавной; скорость ее формирования определяется тем, насколько стремительно из стенок уходит теплота. Но когда кристалл отвердевает с сердцевины, изнутри, как это происходит в снежинке, когда она захватывает молекулы воды, паря в насыщенном влагой воздухе, процесс становится нестабильным. Любой отрезок контура снежинки, «опередивший» соседние, получает преимущество, захватывая большее количество водяных молекул, и поэтому растет гораздо быстрее — обнаруживается так называемый эффект громоотвода. Образуются новые ответвления, от которых, в свою очередь, отпочковываются более мелкие.
Трудность заключалась в том, чтобы решить, какие из множества задействованных в процессе образования снежинки физических сил следует принять во внимание, а какими вполне можно пренебречь. Долгое время считалось, что наиболее важным является рассеивание теплоты, высвобождающейся при замерзании воды. Но физическая природа тепловой диффузии не могла до конца объяснить те образы, которые наблюдали ученые, рассматривая снежинки под микроскопом или выращивая их в лаборатории. Не так давно был разработан метод, позволяющий учесть иной процесс, а именно поверхностное натяжение. Сердцевина новой модели снежинки являет собой самую сущность хаоса: хрупкий баланс между стабильностью и неустойчивостью, мощное взаимодействие сил атомарного и обычного, макроскопического уровней.
Там, где рассеивание теплоты создает преимущественно неустойчивость, поверхностное натяжение порождает стабильность. Действие этой силы ведет к тому, что вещество приобретает более плавные, похожие на стенки мыльного пузыря, очертания, поскольку для создания грубо очерченных поверхностей требуется энергия. Баланс указанных тенденций находится в зависимости от размера кристалла. В то время как рассеивание является по преимуществу крупномасштабным, макроскопическим процессом, поверхностное натяжение сильнее действует на микроскопическом уровне.
Традиционно допускалось, что для целей практики можно пренебречь действием поверхностного натяжения, поскольку оно очень незначительно. Но это не совсем верно. Происходящее в ничтожных масштабах могло сыграть решающую роль. Именно на микроуровне поверхностные эффекты обнаружили бесконечную чувствительность к молекулярной структуре отвердевающего вещества. В случае со льдом преобладание широко известной шестилучевой формы снежинки диктуется естественной симметрией молекул. К своему изумлению, ученые выяснили, что сочетание стабильности и неустойчивости усиливает микроскопический процесс, создавая почти фрактальное кружево, из которого и получаются снежинки. Причем математическое описание процесса дали не те, кто изучал атмосферу, а физики-теоретики и металлурги. Последними руководил свой интерес: молекулярная симметрия металлов различна, а значит, различна и форма характерных кристаллов, которые определяют прочность сплава. Но математика здесь та же, ибо законы формирования таких моделей универсальны.
Сильная зависимость от начальных условий служит целям созидания, а не разрушения. Пока растущая снежинка летит к земле, с час или около того паря в токах воздуха, ветвление ее лучиков в каждый конкретный момент зависит от таких факторов, как температура, влажность и загрязнение атмосферы. Шесть кончиков одной-единственной снежинки, которая занимает в пространстве не более миллиметра, подвергаются воздействию одной и той же температуры, а поскольку законы роста и развития детерминистские по своей сути, в снежинке появляется близкая к идеалу симметрия. Но природа турбулентного воздушного потока такова, что ни одна снежинка не повторяет маршрут предыдущей. В итоге конечная форма снежного кристалла отображает все изменения погодных условий, действию которых он подвергался, а количество их комбинаций может быть безграничным.
Физики любят повторять, что снежинки — неравновесный феномен. Это продукт дисбаланса в перетекании энергии от одного фрагмента природы к другому. Благодаря такому перетеканию на контуре кристалла появляется острие, потом целое множество ответвлений, которые, в свою очередь, превращаются в сложную, невиданную структуру. Открыв, что неустойчивость такого рода подчиняется всеобщим законам хаоса, ученые смогли применить те же методы ко множеству проблем физики и химии и теперь считают, что подошла очередь биологии. Это отчасти подсознательное ощущение. Наблюдая за компьютерным моделированием роста дендритов, ученые воображают морские водоросли, оболочки клеток, делящиеся и развивающиеся организмы.
К настоящему времени открыто множество путей изучения хаоса, начиная с невидимых микроскопических частиц и заканчивая доступной глазу сложностью. В математической физике теория бифуркаций Файгенбаума и его коллег получила распространение среди ученых Соединенных Штатов Америки и Европы. В абстрактных областях теоретической физики положено начало исследованию новых проблем, таких как еще не решенный вопрос о квантовом хаосе: приемлет ли квантовая механика хаотический феномен механики классической? Изучая движение жидкостей, Либхабер соорудил гигантскую емкость с гелием, в то время как Пьер Хоэнберг и Гюнтер Алерс занялись анализом распространения причудливых волн конвекции. В астрономии специалисты по хаосу создают необычные модели гравитационной неустойчивости, чтобы истолковать происхождение метеоритов — необъяснимое выталкивание астероидов из области Солнечной системы, расположенной за орбитой Марса. Биологи и физиологи используют физику динамических систем для изучения иммунной системы человека с ее миллиардами компонентов и человеческого мозга, обладающего способностью к познанию, воспроизведению и распознаванию объектов. Они также размышляют над эволюцией в надежде отыскать всеобщие механизмы адаптации живых существ.
«Эволюция — это хаос с обратной связью», — утверждал Джозеф Форд. Да, Вселенная воплощает в себе беспорядочность и диссипацию. Но беспорядочное, заключающее в себе некую тенденцию, может порождать удивительную сложность.
«Бог играет в кости со Вселенной, — таков был ответ Форда на известный вопрос Эйнштейна, — не брезгая, впрочем, обманом. И сейчас главная цель физики состоит в том, чтобы выяснить, какими правилами руководствуется Всевышний, а затем использовать их в собственных целях».
Такие идеи двигают вперед коллективную научную инициативу. И все же ни философия, ни доказательства, ни опыты не влияют на отдельных ученых, которых наука должна прежде всего и всегда обеспечивать пригодным для работы инструментарием. В некоторых лабораториях традиционные методы уже изживают себя, дорогое оборудование не оправдывает возложенные на него надежды. Обычная наука, как выразился Кун, «сбилась с пути, и ей больше не удается обходить аномальные явления». Веяния хаоса не могли возыметь влияния на каждого ученого, пока метод новой дисциплины не доказал свою необходимость.
В каждой области есть свои примеры. В экологии таковым стала деятельность Уильяма М. Шаффера, последнего из учеников Роберта Макартура, лидера этой дисциплины в 1950-60-х годах. Макартур выработал