неизменного положения в подпространстве контрольных параметров, а свободные параметры могут при этом изменяться по-всякому.

Понятие «балансировочный режим» несколько сродни понятию «равновесие», но шире его, поскольку обыденное сознание воспринимает «равновесие» статично — как неподвижную неизменность во времени. В балансировочном же режиме во времени неизменен процесс колебаний системы относительно точки «равновесия», координаты которой неизменны во времени: система проходит через неё, но не может пребывать в ней, хотя бы потому, что отклонения от неё — ниже порога чувствительности средств измерения или управление негибко, обладает конечным быстродействием и не может вовремя остановить и зафиксировать объект в точке равновесия.

Случай, когда вектор целей изменяться в процессе управления, будучи функцией времени либо функцией матрицы возможностей течения процесса управления и субъективно избранной алгоритмики управления процессом, о чём речь шал в разделе 6.5, — является манёвром. В векторе целей режима манёвра изменяется хотя бы один из контрольных параметров. При рассмотрении реального процесса устойчивого манёвра в подпространствеконтрольных параметров вектор состояния отслеживает с некоторой ошибкой управления изменение вектора целей (содержащего только контрольные параметры). На свободные параметры, как и в случае балансировочного режима, ограничения не накладываются.

Режим маневрирования, в котором производные по времени контрольных изменяющихся параметров постоянны (в пределах допустимой ошибки управления), называется установившимся манёвром. Установившийся манёвр сам является балансировочным режимом, из вектора целей которого исключены изменяющиеся в процессе манёвра контрольные параметры.

Если идти от реально протекающего процесса управления и строить по предположению (т.е. гипотетически) вектор целей субъекта, реально управляющего процессом (это называется «идентификация» вектора целей), то один и тот же режим можно интерпретировать в качестве балансировочного режима или устойчивого колебательного манёвра. Так, при отнесении к вектору целей только параметров, колеблющихся относительно средних значений (в зависимости от ограничений на ошибки управления), режим интерпретируется как балансировочный режим; при отнесении к вектору целей хотя бы одного из произвольно меняющихся параметров, режим интерпретируется как манёвр.

Точно также один и тот же режим можно воспринимать как устойчивый, исходя из одних ограничений на вектор ошибки; и как неустойчивый, исходя из более строгих ограничений на вектор ошибки; в этом предложении хорошо видно проявление возможности троякого понимания устойчивости: 1) по ограниченности колебательного процесса отклонений от некоего идеального режима, 2) по убыванию отклонений после снятия возмущающего воздействия и 3) по предсказуемости.

Простейший пример балансировочного режима — езда на автомобиле по прямой дороге с постоянной скоростью. Все стрелочки на приборной панели, кроме расхода бензина, подрагивают около установившихся положений; но рулём всё же «шевелить» надо, поскольку неровности дороги, боковой ветер, разное давление в шинах, люфты в подвесках и рулевом приводе норовят увести автомобиль в сторону.

Манёвры в свою очередь разделяются на слабые и сильные. Это разделение не отражает эффективности манёвра. Понятие слабого манёвра связано с балансировочными режимами. Перевод системы из одного балансировочного режима в другой балансировочный режим — это один из видов манёвра. Некоторые замкнутые системы обладают таким свойством, что, если этот перевод осуществлять достаточно медленно, то вектор состояния системы в процессе манёвра не будет сильно отличаться от вектора состояния в исходном и (или) конечном балансировочном режиме за исключением изменяющихся в ходе манёвра контрольных параметров и некоторых свободных параметров, информационно связанных с контрольными.

Если на корабле положить руль на борт на 3 — 4 градуса, то корабль начнёт описывать круг очень большого диаметра и будет происходить изменение угла курса. Если это делается вне видимости берегов и в пасмурную погоду, то большинство пассажиров даже не заметят манёвра изменения курса. Если же на полном ходу быстроходного корабля (узлов[230] 25 — 30) резко положить руль на борт градусов на 20 — 30, то палуба в процессе перекладки руля дёрнется под ногами в сторону, обратную направлению перекладки руля; потом начнётся вполне ощутимое вестибулярным аппаратом человека изменение курса, сопровождающееся вполне видимым креном до 10 и более градусов.

Хотя в обоих случаях изменение курса может быть одинаковым, гидродинамические характеристики корабля в первом случае слабого манёвра не будут сильно отличаться от режима прямолинейного движения; во втором случае, когда корабль начнёт входить в циркуляцию диаметром не более 4 — 5 длин корпуса, — будет падать скорость хода, появится значительная по величине поперечная составляющая скорости обтекания корпуса и крен, а общая картина обтекания корпуса и гидродинамические характеристики будут качественно отличаться от имевших место при прямолинейном движении или слабых манёврах.

Разделение манёвров на сильные и слабые в ряде случаев позволяет существенно упростить моделирование поведения замкнутой системы в процессе слабого маневрирования без потери качества результатов моделирования. Поскольку выбор меры качества всегда субъективен, то и разделение манёвров на сильные и слабые определяется субъективизмом в оценке качества моделирования и управления. Но, если такое разделение возможно, то слабому маневру можно подыскать аналогичный ему (в ранее указанном смысле) балансировочный режим.

6.10. Понятие о теориях подобия 

В практической деятельности — в создании новой техники, в организации управления теми или иными процессами — типичны ситуации, в которых по параметрам какой-то одной замкнутой системы надо судить о процессах и параметрах какой-то другой замкнутой системы, которая от первой может отличаться:

·    либо своими размерами при однокачественности природы обеих систем (т.е. при однокачественности физических носителей процессов в обеих системах и во внешней среде),

·    либо природой.

И то и другое нуждается в пояснении.

Что касается различий однокачественных по своей природе систем, то жизнь полна так называемых «масштабных эффектов».

Масштабные эффекты проявляются в том, что при изменении всех или только некоторых размеров однокачественных по своей природе систем значения параметров, характеризующих процессы в самой системе и во взаимодействии её со средой, изменяются не пропорционально масштабу изменения соответствующих размеров исходной систем.

При этом изменение исходных размеров системы может сопровождаться изменением каких-то параметров, характеризующих поведение новой системы, как в большую, так и в меньшую сторону. В некоторых случаях плавный переход по шкале масштаба к иным размерам системы может сопровождаться ступенчатым увеличением или уменьшением параметров, характеризующих её поведение. В других случаях какие-то параметры, характеризующие поведение системы, оказываются безразличными к изменению масштаба по отношению к исходным размерам. Всё это в природе обусловлено тем, что подавляющее большинство параметров, которыми характеризуется система и её поведение, обусловлены не одним, а множеством факторов (т.е. в математических моделях большинство параметров — функции не одного, а многих аргументов, причём функции нелинейные), каждый из которых по разному влияет на изменение характеристических параметров системы при переходе к иному масштабу.

Наличие масштабных эффектов в жизни при оценке однокачественных систем и процессов,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату