Согласно теории фотоэффекта, один фотон может выбить из капли один электрон. Это утверждение проверено на практике — вспомним классический опыт Милликена по определению заряда электрона с помощью капелек жидкости, заряженных под действием излучения. Первый ионизационный потенциал молекулы воды равен I = 12,56 эВ = 2,0 × 10-18Дж; соответственно для выбивания электрона из молекулы воды необходим фотон с частотой выше v = I/h = 3×1015 Гц (h = 6,626×10-34 Дж•с — постоянная Планка), что соответствует ультрафиолетовой области спектра: λ = c/v = 100 нм.
Каждый фотон излучения, выбивающий электрон из капли, заставляет две капли сливаться в одну, уменьшая общее число капель на единицу. Таким образом, чтобы вызвать слияние всех капель, требуется n фотонов на 1 м3. Иначе говоря, для превращения в дождь C м3 облака в секунду, необходим поток излучения, равный Vn фотонов в секунду. Если энергия фотона равна I, а С принять равным 105 м3/с, то требуемая мощность излучения составит
P = СnI = 105 × 5 × 1011 × 2 × 10-18 = 0,1 Вт!
Даже с учетом низкой эффективности процесса мощности в несколько ватт заведомо достаточно для обработки огромного объема облака.
[Для сравнения укажем, что на широте Москвы ежегодно выпадает осадков примерно 60 см в год. —
Нетрудно видеть, что подобный искусственный дождь как нельзя лучше подходит для заполнения водой прудов, каналов и т. д. А обеспечив высокую прицельность искусственного дождя, мы значительно облегчим работу пожарных.
Ржавые доспехи
Размышляя о нейтронной бомбе, которая убивает людей, не уничтожая танки и другую боевую технику, Дедал задумался над возможностью создания оружия противоположного вида, которое бы уничтожало бронированные машины, оставляя людей невредимыми. В связи с этим Дедал вспомнил, что механические напряжения существенно понижают коррозионную устойчивость многих материалов. Молекулы, вызывающие коррозию, проникают в микротрещииы на поверхности материала и вступают в реакцию на дне трещины, где механические напряжения наиболее значительны, и поэтому материал наименее стоек к коррозии. Совместное действие коррозии и механического напряжения наиболее значительны, и поэтому материал наименее стоек к коррозии. Совместное действие коррозии и механического напряжения углубляет трещину. Заметим теперь, что многие молекулы, вступая в химическую реакцию, заметно изменяются в объеме. Например, диаметр атома кислорода, вступившего в химическую связь с металлом, увеличивается почти вдвое. Химики фирмы КОШМАР заняты поисками газообразных веществ, молекулы которых при вступлении в реакцию увеличиваются в объеме особенно сильно. Попадая в поверхностную микротрещину и вступая на ее дне в реакцию, эти молекулы станут раздвигать края трещины — ведь нет такого материала, который мог бы противостоять силам молекулярного расширения. Это приведет к значительному усилению механических напряжений и, как следствие, к ускорению коррозии — так что подобные чрезмерно агрессивные вещества уничтожат материал, едва успев попасть на его поверхность. Каждое из боевых химических веществ класса «вдребезггаз» (торговая марка фирмы КОШМАР) вступает в реакцию только с определенным материалом (пластмассой или металлом) и совершенно безвредно для человека.
Это гуманное антиоружие коренным образом изменит характер военных действий. Будет интересно наблюдать действие «вдребезггаза», поражающего стальную броню и превращающего танки в груду ржавых обломков. Более экономичным, однако, скажется применение газа, избирательно поражающего, допустим, медные сплавы (большинство из которых, кстати, особенно подвержено коррозии под действием механических напряжений). Лишившись электронной начинки, военная техника замрет; латунные гильзы патронов и снарядов рассыплются в прах; исчезнут и знаки различия, и медные пуговицы, и пряжки ремней. Так битва прекратится сама собой.
Распространяясь в глубь твердого тела, трещина увеличивает его поверхность, но чтобы трещина распространялась дальше, необходимо поступление энергии. Если в твердом теле существуют механические напряжения, энергия поступает за счет ослабления структурных напряжений вблизи образующейся трещины. При небольших трещинах и умеренных напряжениях эта энергия, однако, недостаточна для распространения трещины; поэтому большинство конструкционных материалов в процессе нормальной эксплуатации не склонно к самопроизвольному растрескиванию. Предположим теперь, что мы привлекли дополнительный источник энергии, а именно энергию, выделяющуюся в процессе коррозии. Молекулярный слой (монослой), допустим слой окисла, образуется на поверхности почти мгновенно. Достаточна ли выделяющаяся при этом энергия для разрушения материала?
Величина поверхностной энергии Eпов для большинства металлов имеет порядок 1 Дж/м2, например, для железа Eпов = 1,7 Дж/м2. Плотность железа ρ = 7900 кг/м3, молярная масса А = 0,056 кг/моль. Тогда 1 м3 железа содержит ρ/A молей вещества, или N = ρL/A атомов, а в 1 м2 поверхности содержится N2/3 атомов, т. е.
Mпов = N2/3/L = (ρ/A)2/3/L-1/3 = (7900/0,056)2/3 × (6,022 × 1023)1/3 = 3,2 × 10-5 моль/м2.
Теплота, выделяющаяся в процессе коррозии железа (т. е. превращения Fe в Fe2O3+nH2O, составляет ΔH = -2,7 × 10-5 Дж/моль (знак «минус» указывает на выделение энергии). Тогда количество теплоты, выделившейся при образовании монослоя ржавчины на 1 м2 поверхности, равно Hпов = ΔHМпов = 2,7 × 10-5 × 3,2 × 10-5 = 8,6 Дж/м2, что в пять раз больше, чем необходимо для образования 1 м2 свободной поверхности. Таким образом, если хотя бы пятую часть этой энергии удастся направить на образование трещины, то эта трещина будет самопроизвольно распространяться даже в ненагруженном металле. Если