повысить температуру всего в два раза (до шестисот градусов Кельвина), то реакция в смеси закончилась вы всего за полтора часа. А при температуре в восемьсот градусов смесь прореагировала бы в течение секунды.
Для многих химических реакций справедливо следующее, довольно грубое, утверждение: повышение температуры на десять градусов приводит к удвоению скорости реакции.
Это свойство химических реакций природа использовала в процессе эволюции живых существ. Некоторые млекопитающие в трудное для них время года, зимние месяцы, впадают в спячку. При этом температура тела падает и лишь на несколько градусов превышает температуру окружающей среды. Жизненные процессы резко замедляются, что позволяет организму ограничить отдачу тепла наружу и преодолеть трудности, связанные с нехваткой питания. Наоборот, иногда выгодно повысить температуру тела (например, во время болезни) для того чтобы усилить обмен веществ и ускорить течение жизненных процессов. С этим успешно справляются органы терморегуляции организма.
Свойство химических реакций сильно ускоряться с повышением температуры лежит в основе объяснения и процессов горения.
III
Изучение горения лучше всего начать с какого-нибудь простого случая. Свеча для этого нам не годится — слишком много побочных факторов сопутствуют химической реакции горения. Топливо сначала должно расплавиться, затем подняться по фитилю, испариться и лишь потом, смешавшись с кислородом воздуха, сгореть. Вспомним слова Фарадея:
Целесообразно начать с горения газов. Это связано с тем, что газовые химические реакции лучше изучены, чем реакции в конденсированных телах или на их поверхности. Кроме того, и многие физические процессы (теплопроводность, диффузия) в газовых системах мы можем рассчитывать лучше, чем в твердом теле или жидкости.
Пусть в некотором сосуде находится смесь газов, способная к экзотермической реакции. Если температура газа достаточно низка (например, комнатная), то лишь небольшая доля молекул может вступить в химическую реакцию. Для многих горючих смесей скорость реакции при комнатной температуре столь ничтожна, что они могут сохраняться очень долго. Повысим теперь температуру газа — возрастет скорость химической реакции, а вместе с нею и скорость выделения тепла. Это приведет к дальнейшему, уже самопроизвольному нагреву газа за счет его химической энергии. Если бы не было потерь энергии через стенки сосуда, то произошел бы, как обычно говорят, тепловой взрыв. Повышение температуры вело бы к росту скорости химической реакции, а рост скорости реакции к увеличению температуры. Скорость этого процесса очень быстро возрастает во времени, так что он носит взрывной характер. Повышение температуры газа после завершения реакции пропорционально тепловому эффекту.
При учете потерь энергии газа через стенки сосуда могут осуществиться два случая. Если размеры сосуда достаточно велики, то теплопотери малы по сравнению с тепловыделением за счет химической реакции. Действительно, скорость выделения энергии пропорциональна объему сосуда, т. е. кубу его линейного размера, а теплопотери — поверхности, которая пропорциональна квадрату линейного размера.
Увеличение объема сосуда снижает роль теплопотерь. Взрыв будет происходить, но менее бурно, чем в неограниченном сосуде. Если же роль теплопотерь велика (небольшой объем газа), то взрыв не успеет развиться — после некоторого повышения температуры газа устанавливается стационарный режим, при котором тепловыделение равно теплопотерям и реакция идет с почти постоянной, обычно малой, скоростью.
Необходимо отметить, что переход от невзрывного, медленного протекания реакции ко взрыву носит резкий характер. Достаточно лишь на немного увеличить размер сосуда или температуру окружающей среды, как течение реакции радикально меняется. Это один из примеров существования критических условий в горении.
Можно привести много примеров критических условий. Самые наглядные и понятные из них механические. Поставим на стол кость от домино (рис. 3). Если наклонить ее на угол, меньший некоторого, то предоставленная самой себе она вернется в начальное положение (
В рассмотренной выше постановке опыта скорость химической реакции почти постоянна по объему сосуда, поэтому тепловой взрыв охватывает весь газ. Представим теперь, что в достаточно широкой трубе находится смесь газов
Если газ холодный, то скорость реакции ничтожна, и смесь будет находиться в трубе сколь угодно долго. Нагревая газ у одного конца трубы, можно вызвать местное воспламенение смеси. Выделившееся при этом тепло будет передаваться соседним, холодным слоям газа, что приведет к распространению реакции вдоль трубы.
Если смесь прореагировала в одном конце трубы (скажем, в правом), то по ее длине будет меняться не только температура, но и концентрации исходных
Где происходит химическая реакция? Мы знаем, что ее скорость зависит от концентрации исходных веществ и температуры. Слева большая концентрация, но низкая температура, справа — наоборот. Вспомним теперь, что скорость реакции очень сильно зависит от температуры и гораздо слабее от концентрации реагирующих веществ. Поэтому можно утверждать, что максимальная скорость химической реакции достигается в том месте, где температура наивысшая, т. е. равна