declare(vector,int);
main() (* vector(int) vv(10); vv[2] = 3; vv[10] = 4; // ошибка: выход за границы *)
Файл vector.h таким образом определяет макросы, чтобы макрос declare(vector,int) после расширения превращался в описание класса vector, очень похожий на тот, который был определен выше, а макрос implement(vector,int) расширялся в определение функций этого класса. Поскольку макрос implement (vector,int) в результате расширения превращается в
определение функций, его можно использовать в программе только один раз, в то время как declare(vector,int) должно использоваться по одному разу в каждом файле, работающем с этим типом целых векторов.
declare(vector,char); //... implement(vector,char);
даст вам отдельный тип «вектор символов». Пример реализации обобщенных классов с помощью макросов приведен в #7.3.5.
1.17 Полиморфные Вектора
У вас есть другая возможность – определить ваш векторный и другие вмещающие классы через указатели на объекты некоторого класса: class common (* //... *); class vector (* common** v; //... public: cvector(int); common* amp; elem(int); common* amp; operator[](int); //... *);
Заметьте, что поскольку в таких векторах хранятся указатели, а не сами объекты, объект может быть 'в' нескольких таких векторах одновременно. Это очень полезное свойство подобных вмещающих классов, таких, как вектора, связанные списки, множества и т.д. Кроме того, можно присваивать указатель на производный класс указателю на его базовый класс, поэтому можно использовать приведенный выше cvector для хранения указателей на объекты всех производных от common классов. Например:
class apple : public common (* /*...*/ *) class orange : public common (* /*...*/ *) class apple_vector : public cvector (* public:
cvector fruitbowl(100); //... apple aa; orange oo; //... fruitbowl[0] = amp;aa; fruitbowl[1] = amp;oo; *)
Однако, точный тип объекта, вошедшего в такой вмещающий класс, больше компилятору не известен. Например, в предыдущем примере вы знаете, что элемент вектора является common, но является он apple или orange? Обычно точный тип должен впоследствии быть восстановлен, чтобы обеспечить правильное использование объекта. Для этого нужно или в какой-то форме хранить информацию о типе в самом объекте, или обеспечить, чтобы во вмещающий класс помещались только объекты данного типа. Последнее легко достигается с помощью производного класса. Вы можете, например, создать вектор указателей на apple:
class apple_vector : public cvector (* public: apple* amp; elem(int i) (* return (apple* amp;) cvector::elem (i); *) //... *);
используя запись приведения к типу (тип)выражение, чтобы преобразовать common* amp; (ссылку на указатель на common), которую возвращает cvector::elem, в apple* amp;. Такое применение производных классов создает альтернативу обобщенным классам. Писать его немного труднее (если не использовать макросы таким образом, чтобы производные классы фактически реализовывали обобщенные классы, см. #7.3.5), но оно имеет то преимущество, что все производные классы совместно используют единственную копию функции базового класса. В случае обобщенных классов, таких, как vector(type), для каждого нового используемого типа должна создаваться (с помощью implement()) новая копия таких функций. Другой способ, хранение идентификации типа в каждом объекте, приводит нас к стилю программирования, который часто называют объекто-основанным или объектно-ориентированным.
1.18 Виртуальные Функции
Предположим, что мы пишем программу для изображения фигур на экране. Общие атрибуты фигуры представлены классом shape, а специальные атрибуты – специальными классами:
class shape (* point center; color col; //... public: void move(point to) (* center=to; draw(); *) point where() (* return center; *) virtual void draw(); virtual void rotate(int); //... *);
Функции, которые можно определить не зная точно определенной фигуры (например, move и where, то есть, «передвинуть» и «где»), можно описать как обычно. Остальные функции описываются как virtual, то есть такие, которые должны определяться в производном классе. Например:
class circle: public shape (* int radius; public: void draw(); void rotatte(int i) (**) //... *);
Теперь, если shape_vec – вектор фигур, то можно написать:
for (int i = 0; i«no_of_shapes; i++) shape_vec[i].rotate(45);
чтобы повернуть все фигуры на 45 градусов (и заново нарисовать)
Такой стиль особенно полезен в интерактивных программах, когда объекты разных типов одинаково обрабатываются основным
программным обеспечением. Ведь по сути дела, типичное действие пользователя – это ткнуть в какой-нибудь объект и сказать Кто ты? Что ты такое? и Делай, что надо! не давая никакой информации о типе. Программа может и должна уяснить это для себя сама.
Глава 2 Описания и Константы
Совершенство достигается только к моменту краха.
В этой главе описаны основные типы (char, int, float и т.д.) и основные способы построения из них новых типов (функций, векторов, указателей и т.д.). Имя вводится в программе посредством описания, которое задает его тип и, возможно, начальное значение. Даны понятия описания, определения, области видимости имен, времени жизни объектов и типов. Описываются способы записи констант в С++, а также способы определения символических констант. Примеры просто демонстрируют характерные черты языка. Более развернутый и реалистичный пример приводится в следующей главе для знакомства с выражениями и операторами языка С++. Механизмы задания типов, определяемых пользователем, с присоединенными операциями представлены в Главах 4, 5 и 6 и здесь не упоминаются.
2.1 Описания
Прежде чем имя (идентификатор) может быть использовано в С++ программе, он должно быть описано. Это значит, что надо задать его тип, чтобы сообщить компилятору, к какого вида сущностям относится имя. Вот несколько примеров, иллюстрирующих разнообразие описаний:
char ch; int count = 1; char* name = «Bjarne»; struct complex (* float re, im; *); complex cvar; extern complex sqrt(complex); extern int error_number; typedef complex point; float real(complex* p) (* return p-»re; *); const double pi = 3.1415926535897932385; struct user;
Как можно видеть из этих примеров, описание может делать больше чем просто ассоциировать тип с именем. Большинство описаний являются также определениями то есть они также определяют для имени сущность, к которой оно относится. Для ch, count и cvar этой сущностью является соответствующий объем памяти, который должен использоваться как переменная – эта память будет выделена. Для real это заданная функция. Для constant pi это значение 3.1415926535897932385. Для complex этой сущностью является новый тип. Для point это тип complex, поэтому point становится синонимом complex. Только описания
extern complex sqrt(complex); extern int error_number; struct user;
не являются одновременно определениями. Это означает, что объект, к которому они относятся, должен быть определен где-то еще. Код (тело) функции sqrt должен задаваться неким другим описанием, память для переменной error_number типа int должна выделяться неким другим описанием, и какое-то другое описание типа user должно определять, что он из себя представляет. В С++ программе всегда должно быть только одно определение каждого имени, но описаний может быть много, и все описания должны согласовываться с типом объекта, к которому они относятся, поэтому в этом фрагменте есть две ошибки:
int count; int count; // ошибка: переопределение extern int error_number; extern int error_number; // ошибка: несоответствие типов
а в этом – ни одной (об использовании extern см. #4.2):
extern int error_number; extern int error_number;
Некоторые описания задают «значение» для сущностей, которые они определяют:
struct complex (* float re, im; *); typedef complex point; float real(complex* p) (* return p-»re *); const double pi = 3.1415926535897932385;