наблюдать не только в РНК мозговых клеток, но и в молекулах других органов, например в сердце, если заставить работать его с усиленной нагрузкой. Все это неспецифический, вторичный эффект. Под влиянием подобных возражений и собственных размышлений Хиден больше не настаивает на РНК. У Хидена возникает новая схема: запись начинается все-таки с ДНК: хоть она и занята передачей наследственной информации, в ее молекулах найдется место и для индивидуального опыта. Остается решить, где скапливается тот белок, который будет хранить запись, узнавать свои импульсы и запускать циркуляцию при воспроизведении. Возможно, его место в постсинаптической мембране - в той части нейрона, куда сигнал приходит вместе с медиатором от соседнего нейрона.

Но почему речь должна идти только о нейронах и их молекулах? Ведь нейронные цепи окружены глиальными клетками, которых раз в десять больше, чем самих нейронов. А что, если глия тоже участвует в записи следов? Такую гипотезу еще до каннибалических сенсаций выдвинул американский нейрофизиолог Роберт Галамбос. Было известно, что глия поставляет нейронам материал для РНК. Галамбос же стал доказывать, что не только поставляет, но и программирует работу нейронов, сообщает им, в какой последовательности им следует работать. Профессор Эйди, тоже американец, обнаружил, что глиальные клетки, вплотную прилегающие к нейронам, долго сохраняют изменения в своей способности проводить ток. Может быть, говорил он на конференции по биокибернетике в 1971 г., в Ростове-на-Дону, изменения в глие влияют на нейронные импульсы, и это влияние не лишено информативного содержания. Пущинские биологи измерили, сколько же времени глня хранит следы активности нейрона. Оказалось, десятки часов: может быть, Эйди и прав. Но самое, пожалуй, интересное удалось открыть члену-корреспонденту АН СССР А. И. Ройтбаку. Прямо в микроскоп Ройтбак наблюдал, как под действием медиаторов отростки глиальных клеток вытягиваются к месту выделения медиатора. Это был самый настоящий таксис, автоматический рефлекс, который мы наблюдали у асцидий и гусениц. Всякий таксис, как и обновление состава РНК, это зачаточная, или донервная, память, это всего лишь «изменение от употребления», подобное изменению в мышцах. Ф. 3. Меерсон считает, что лучшего определения памяти вообще, чем «изменение от употребления», в наши дни не придумаешь: кратко и исчерпывающе. Но если миллиарды наших «асцидий» будут реагировать все вместе, да еще согласованно и непрерывно, не сложится ли из этих квинтиллионов таксисов гигантское, многоуровневое и динамичное хранилище следов, которое будет уже не донервным, а вполне нервным, не механическим, а полным глубокого значения?

КОЛЛЕКТИВНЫЕ СОСТОЯНИЯ

Вытягивание глиальных клеток внесло приятное оживление в среду сторонников гипотезы проторения, наблюдавших за поисками внутримолекулярного кода с известным недоверием. Гипотеза проторения привлекала многих ученых - Рамона-и-Кахала, Павлова, а в наши дни Хебба, Экклза, Конорского. Последние воочию видели структурные изменения в клетках, причем не только в глиальных, но и в нервных. Если какой-нибудь аксон будет поврежден, связь нейрона с соседями не прервется: через некоторое время ствол аксона покроется ветвями терминалями, терминали начнут совершать движения, напоминающие движения амебы, их кончики будут становиться все тоньше и вытягиваться все дальше и, наконец, придут в соприкосновение с другими нейронами. Образуются новые синапсы. Наблюдая за ростом аксонов и глиальных клеток, нетрудно представить себе действие электрошока или рибонуклеазы и весь процесс консолидации следов. Достаточно только согласиться с тем, что след кодируется благодаря структурному сдвигу в клетке, приводящему к образованию новой связи в клеточном ансамбле. Волокно аксона или глии растет, вдруг мозг, охватывают судороги, кончик волокна сокращается, и теперь надо будет подождать, пока он не наберет силу и не начнет расти снова. Образ бури, пригибающей ветви, лишается своего переносного смысла. В этой картине разгадка и самоусиления следов, и амнезий, и всей необъятности нашей памяти. Один нейрон может установить десятки контактов со своими соседями, и даже если к старости у нас перемрет половина нейронов, самоусиление и тренировка сохранят нам все связи для воспроизведения заслуживающих того впечатлений.

РНК - участница синтеза белка, из которого состоят ветви. Ради этого синтеза и начинается в нейронах бурное образование РНК. Как хорошо показал Ф. 3. Меерсон в своей книге «Пластическое обеспечение функций организма» (где глава о памяти написана вместе с Р. И. Кругликовым), усиленная импульсация, вызываемая умственным напряжением, быстрее изнашивает белки, и они распадаются. В клетках образуются продукты распада - метаболиты изнашивания. Система белкового синтеза работает на принципе обратной связи. Образование метаболитов служит сигналом к восстановлению нарушенного равновесия - к началу нового синтеза РНК и белков. По мнению Меерсона, эти метаболиты, а не сама РНК, и делали крыс Джекобсона сообразительнее. Получив кусочки обученного мозга или даже ганглия, а с ним метаболиты, необученный мозг начинал активно синтезировать новый белок и воспринимал навык «с одного сочетания». Физиологов, экспериментировавших с рибонуклеазой, сначала удивляло, почему она не влияет на самую первую реакцию после обучения навыку. Объяснение простое: на первых порах нейронам хватает старого запаса РНК. Когда они истощаются, рефлекс угасает. С тех же позиций можно объяснить и перестановку нуклеотидов в молекулах. Новые ветви строятся из нового белка, а новому белку нужна новая и в структурном отношении РНК. Мириады связей охватывают весь мозг, вот почему никому не удалось найти хранилище следов в одном каком-нибудь месте и с помощью электрода навсегда изъять оттуда образ ноги или ботинка. Помнит весь мозг, помнит и умеет сливать все образы в единый процесс воспоминания. Возможно, следы записываются на многих уровнях и во многих отделах мозга: разрушен один, где запечатлены подробности, остается другой, где подробностей меньше, но зато отчетливо записано значение события или предмета. Природа склонна к иерархии. Сторонники гипотезы проторения и образования ансамблей не отрицают молекулярного кода. Они, подобно Лапласу, просто не нуждаются в гипотезе кода, но, если Хиден окажется прав, они готовы согласиться с ним. Лет пять об РНК не было ни слуху, ни духу, но вот в 1971 г. в Будапеште, на III конференции Международного нейрохимического общества группа американских исследователей во главе с Г. Унгаром сообщила об идентификации «фактора», с помощью которого навык переходил из мозга в мозг. Группу мышей приучали бояться темноты. Такая же боязнь возникала и у второй группы, когда им вводили экстракт из мозга первой. Ученым удалось выделить активное начало, содержащееся в виде комплекса с РНК. Это был пептид из 15 аминокислот, который биохимики назвали «скотофобином», то есть «мракострахом». Через несколько месяцев другая группа исследователей, синтезировав скотофобин, ввела его золотым рыбкам, и рыбки стали бояться темноты. Пометив его радиоактивным йодом, экспериментаторы определили, в каких долях мозга он концентрируется у рыбок. Что ж, все это может и иметь отношение к памяти - к одному из ее уровней. Сторонники гипотезы проторения не утверждают, что структурные связи это и есть следы. Ведь это тоже код, такое же вторичное, а не первичное явление, как и последовательность из 15 аминокислот скотофобина. Никто не может сказать заранее, какой должна быть структура пептида, вызывающего боязнь света, да и существует ли такой пептид. Точно так же ни один нейрофизиолог не найдет те конкретные синапсы, которые образуются после запоминания того или иного навыка. Может наступить тот день, когда нейрофизиологические и биохимические гипотезы сольются в одну. Но все равно единая гипотеза так и останется гипотезой, а не теорией, ибо никто пока не представляет себе кодирования ни на уровне пептида, ни на уровне аксонной ветви. Как психологический образ обретает структурный символ? Как происходит декодирование, обратное превращению? Перстень оставляет отпечаток, но отпечаток, увы, не зеркальное изображение перстня, а неведомый символ. А может быть, и нет никаких символов, нет отпечатков, может быть, вообще все происходит иначе?

Попытки примирить две главные гипотезы следов можно найти у американского нейропсихолога Карла Прибрама. «Молекулярное кодирование,- говорил он,- может быть предназначено для одних нужд, например, для немедленного узнавания, а синаптическое для других, например, для припоминания целых событий, развернутых во времени». В этих словах отражена самая главная из нынешних тенденций в подходе к следам, родившаяся задолго до их поисков, но завладевшая умами только в последнее десятилетие. Истоки этой тенденции мы видели уже у Аристотеля, который думал, что важнее всего не след, а его интерпретация - усилие души, носящее временной характер. «Нельзя приписывать пространственного отношения тому, что определено только во времени»,- заметил через много веков Кант, и Шеррингтон, сравнивший мозг с ткацким станком, с удовольствием процитировал Канта в одной из своих

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату