кругом. А созерцатели всецело актуального божественного бытия называли Бога как бы бесконечным шаром[38]. Опять-таки, мы покажем, что и они правильно понимали величайший максимум и что смысл у них всех один.
Глава 13
ОБ ИЗМЕНЕНИЯХ, ПРЕТЕРПЕВАЕМЫХ МАКСИМАЛЬНОЙ И БЕСКОНЕЧНОЙ ЛИНИЕЙ
Итак, я утверждаю, что если бы существовала бесконечная линия, она была бы прямой, она была бы треугольником, она была бы кругом, и она была бы шаром; равным образом, если бы существовал бесконечный шар, он был бы кругом, треугольником и линией; и то же самое надо говорить о бесконечном треугольнике и бесконечном круге.
Во-первых, что бесконечная линия будет прямой, очевидно: диаметр круга есть прямая линия, а окружность – кривая линия, большая диаметра; если эта кривая тем меньше в своей кривизне, чем большего круга окружностью она является, то окружность максимального круга, больше которого не может быть, минимально крива, а стало быть, максимально пряма. Минимум совпадает таким образом с максимумом. Даже и на глаз видно, что максимальная линия с необходимостью максимально пряма и минимально крива. Здесь не может оставаться ни тени сомнения, когда мы рассмотрим на фигуре сбоку, что дуга

Во-вторых, как сказано, бесконечная линия есть максимальный треугольник, круг и шар. Для доказательства этого надо рассмотреть на конечных линиях, что заключено в возможности конечной линии; поскольку все, чем конечная линия является в возможности, бесконечная линия есть в действительности, мы сможем увидеть искомое еще яснее.
Мы знаем прежде всего, что конечная линия по своей длине может быть длиннее и прямее; а уже доказано, что максимальная линия – самая длинная и прямая. Потом, если линия

Опять-таки, если
Поскольку, таким образом, в возможности конечной линии заключены все эти фигуры, а бесконечная линия есть действительным образом все то, возможность чего представляет конечная, то, следовательно, бесконечная линия есть и треугольник, и круг, и шар, что и следовало доказать.
Так как ты, наверное, захочешь яснее убедиться, что бесконечное есть действительность всего, что заключено в возможности конечного, дам тебе совершенно удостовериться в этом.
Глава 14
О ТОМ, ЧТО БЕСКОНЕЧНАЯ ЛИНИЯ ЕСТЬ ТРЕУГОЛЬНИК
Воображение, неспособное выйти за пределы чувственных вещей, не улавливает, что линия может быть треугольником, потому что количественное различие обоих несоизмеримо; но для разума это нетрудно.
В самом деле, уже доказано, что максимальным и бесконечным может быть только одно. Ясно также, раз всякие две стороны любого треугольника в сумме не могут быть меньше третьей, что если у треугольника одна из сторон бесконечна, две другие будут не меньше. Потом, поскольку любая часть бесконечности бесконечна, у треугольника с одной бесконечной стороной другие тоже обязательно будут бесконечными. Но нескольких бесконечностей не бывает, и за пределами воображения ты трансцендентно понимаешь, что бесконечный треугольник не может состоять из нескольких линий, хоть этот максимальный, не составной и простейший треугольник есть истиннейший треугольник, обязательно имеющий три линии, и, значит, единственная бесконечная линия с необходимостью оказывается в нем тремя, а три – одной, простейшей. То же в отношении углов: в нем будет только один бесконечный угол, и этот угол – три угла, а три угла – один. Не будет этот максимальный треугольник и состоять из сторон и углов, но бесконечная линия и угол в нем – одно и то же, так что линия есть и угол, раз весь треугольник – линия.

Понять это тебе поможет еще восхождение от количественного треугольника к не-количественному (non-quantum). Всякий количественный треугольник, как известно, имеет три угла, равные двум прямым, и чем больше один угол, тем меньше другие. Хотя каждый угол треугольника может увеличиваться только до двух прямых исключительно, а не максимально, в соответствии с нашим первым принципом, однако допустим, что он увеличивается максимально до двух прямых включительно, оставаясь при этом треугольником. Toгда окажется, что у треугольника один угол, который есть три, и три образуют один. Точно так же ты сможешь убедиться, что треугольник есть линия. Любые две стороны количественного тpeyгольника в сумме настолько длиннее третьей, насколько образуемый ими угол меньше двух прямых; например, поскольку угол
Глава 15
О ТОМ, ЧТО ЭТОТ ТРЕУГОЛЬНИК БУДЕТ КРУГОМ И ШАРОМ