организация массового производства на ВЗПП, а затем и на других заводах серии этих ИС, внесли большой вклад в развитие отрасли и сыграли огромную роль в создании важнейших оборонных комплексов страны.

Довольно скоро в МЭПе определились с тем, что основными для отрасли должны стать твердые схемы на кремнии, а гибридную технологию постепенно стали сворачивать, оставляя это поле деятельности создателям аппаратуры. НИИ 'Пульсар', НИИМЭ, Воронежское КБ разработали базовые маршруты планарной технологии для производства ИС и планарных транзисторов. По их техническому заданию НИИТМ (директор Савин В. В.), Минское Конструкторское бюро точного электронного машиностроения (КБТЭМ, директор И. М. Глазков), НИИ технологии и организации производства в Горьком (НИИТОП, директор А. Г. Салин), НИИ полупроводникового машиностроения в Воронеже (НИИПМ, директор Лаврентьев К. А.), НИИ 'Электронстандарт' (директор Гаген) разработали комплект технологического оборудования 'Корунд', обеспечивающий массовый выпуск ИС и полупроводниковых приборов по планарной технологии.

Планарная технология построена на многократном повторении фотолитографического процесса, в результате которого на кремниевой пластине создаются защищенные и незащищенные фоторезистом области. Последние подвергаются соответствующей технологической обработке, после которой вновь поступают на следующий цикл фотолитографии. При этом точности совмещения изображений в последующих циклах должны быть много меньше технологических минимальных размеров создаваемого на кремниевой пластине элемента. В 1968 году они составляли 8 мкм, а в 1970 — уже 2 мкм. Естественно, что оптико — механическое оборудование, в частности фотоштампы, установки совмещения и экспонирования пластин, обеспечивающее фотолитографические процессы с такой точностью, попадало под торговое эмбарго западных стран. Отечественные же оптики-механики из Министерства оборонной промышленности (ГОИ и ЛОМО) под любыми предлогами отказывались от разработки нужных систем.

Разработка оптико-механического оборудования была поручена созданному в Минске Конструкторскому бюро точного электронного машиностроения (КБТЭМ). Первым его директором И. М. Глазковым был создан замечательный коллектив, прекрасное оптическое и механическое производство. К созданию оптико-механического оборудования была привлечена также широко известная фирма 'Карл Цейс Йена' (ГДР).

Чтобы сделать микросхемы действительно доступными, массовыми нужно было переходить на кремниевые пластины повышенного диаметра. Так поступали во всем мире: ведь удвоение диаметра пластин позволяло разместить на ней вчетверо больше кристаллов. Это вело к повышению производительности труда, резкому снижению стоимости приборов, но одновременно повышало требования к оборудованию. Без улучшения технологии выход годных кристаллов с больших пластин не вырос бы, если бы даже не стал ниже. Накопленный опыт эксплуатации первых линий 'Корунд' позволил поставить задачу по разработке новых высокопроизводительных автоматизированных линий на пластинах повышенного диаметра (до 75 мм), предназначенных для оснащения предприятий в следующей пятилетке (1971 — 1975 гг.). Задача эта была очень сложная для всех предприятий, поскольку даже самые передовые НИИМЭ с заводом 'Микрон' в 1968 году еще работали на пластинах диаметром 25 мм, и только что перешли на пластины диаметром 40 мм. Ответственность за создание необходимых материалов, и в первую очередь пластин кремния повышенного диаметра, была возложена на НИИМВ (директор А. Ю. Малинин).

К началу 70-х годов, за неполных два десятилетия развития микроэлектроника перешла к этапу создания больших интегральных схем — БИС, содержащих более 1000 элементов на одном кристалле. Она стала основной базой создания всех радиотехнических систем в стране, и каждый год число заявок на новые разработки увеличивалось. При этом заказы на разработку ИС от предприятий, занимающихся созданием близкой по задачам аппаратуры, могли сильно отличаться, даже если они относились к одному министерству. Военпреды твердо отстаивали позиции своих подопечных фирм, хотя основой для них служили 'традиции построения аппаратуры на предприятии', вкусы разработчиков, образцы зарубежной техники. На заявочную кампанию 1971 года в один только НЦ поступило уже около 1000 предложений на разработку новых ИС. При тогдашнем уровне проектирования интегральных схем и технологии их производства удовлетворить все эти заявки было конечно же невозможно, в лучшем случае все НИИ и КБ смогли бы реализовать не более 20 % от числа заказов.

Для выхода из тупиковой ситуации были творчески использованы пути, по которым строились взаимоотношения с заказчиками остальной продукции электронной промышленности. Именно творчески, поскольку различие между интегральной схемой из хотя бы сотни транзисторов на кристалле с каким- нибудь трансформатором или приемо-усилительной лампой слишком велико. Однако, в результате скрупулезной работы специалистов ГНТУ, ЦБПИМСа, предприятий-разработчиков, включавшей частые выезды в заказывающие организации для ознакомления с замыслами главных конструкторов, деталями разработки, имеющимися образцами отечественной и зарубежной техники, стало возможным выработать общий подход к построению параметрических рядов ИС, которые вбирали в себя основные схемотехнические решения, присущие данному классу ИС и технологии их изготовления. Большую роль в достижении общего согласия сыграли военные из ЦНИИ-22 МО — ведущего института по элементной базе радиоэлектронной аппаратуры военного назначения — и головной организации Министерства обороны, курирующей эти проблемы. Их руководители, генералы Р. П. Покровский, П. И. Сугробов, Е. Я. Чаловский, В. П. Балашов, были и настоящими инженерами.

Одним из первых примеров успешного построения параметрического ряда ИС была разработка номенклатуры приборов, обеспечивающих создание перспективных вычислительных комплексов: 'Эльбрус', ЕС ЭВМ, СМ ЭВМ. Соглашение с их главными конструкторами: В. С. Бурцевым — директором ИТМ и ВТ Ларионовым А. М., а затем Пржиялковским В. В — директорами НИЦЭВТ, Наумовым Б. Н. - директором ИНЭУМ — было достигнуто непросто, но оно позволило немедленно приступить к реализации этих решений на предприятиях МЭП. Этот удачный опыт полностью подтвердил правильность выработанного подхода и постепенно он стал распространяться на разработки систем других назначений.

Таким вот образом удалось тогда сдержать безудержный рост номенклатуры ИС и избежать 'тирании количества', не дать ей утопить не очень еще окрепшую микроэлектронику, и тем самым обеспечить выпуск современной аппаратуры на микросхемах.

Чтобы соответствовать уровню лучших достижений были начаты разработки нескольких наращиваемых рядов интегральных схем для радиосвязи, операционных усилителей, запоминающих устройств и многих других изделий, в каждом из которых было не менее полусотни типов ИС. Одни микросхемы обеспечивали очень высокое быстродействие, но при этом расходовали большую электрическую мощность, другие наоборот имели малое электропотребление, но обладали невысоким быстродействием. Были необходимы и схемы, обладающие средними параметрами. Так появились ИС серий 500, 100, 700, серии 155, 530, 531, 555, и другие, отличавшиеся технологиями. Прообразом для ряда быстродействующих схем серии 500 были взяты серии американских фирм Motorola, Texas Instruments и др.

Постоянной заботой А.И. было поддержание высокого уровня советской электроники, но если интегральные схемы малой и средней степени интеграции еще можно было совершенствовать на традиционной базе, то переход к технологии БИС и СБИС требовал значительного увеличения капиталовложений на оснащение отрасли новым, все более сложным и дорогим оборудованием для их производства и контроля качества. В интегральных схемах начала 70-х годов использовались линии шириной 20 мкм, к середине десятилетия геометрические размеры этих линий уменьшились вдвое, а к его концу вполне обычными для производства микросхем стали размеры 3 мкм, причем уже довольно легко было получать опытные образцы схем с линиями шириной 1 мкм. Увеличение плотности размещения элементов ИС потребовало применения оборудования с высокой разрешающей способностью для переноса конструкций схем на кремний. Сюда включалось и оптико-механическое оборудование, о разработке которого уже говорилось выше, и термическое, и вакуумно-напылительное, химической обработки: нанесение фоторезиста, травление, промывка и т. д., и такое оборудование было создано в МЭПе и выпускалось серийно.

Технология разработки фотошаблонов, которая стимулировала развитие всех литографических методов, настолько усложнилась, что стала невозможной без машинного проектирования. В системе анализа и разработки проектируемой топографии фотошаблона центральным элементом стал диалоговый видеотерминал, снабженный световым пером для внесения изменений. ЭВМ делали все, начиная от

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату