заставляешь страдать свой народ!

— Раз ты не ощущаешь того, что я, — ответил Джарри, — мои мотивы покажутся тебе бессмысленными. В конце концов, они основаны лишь на моих чувствах, а мои чувства отличаются от твоих, ибо продиктованы скорбью и одиночеством. Попробуй, однако, понять вот что: я для них божество. Мои изображения можно найти в любом лагере. Я — Победитель Медведей из Пустыни Мертвых. Обо мне слагают легенды на протяжении двух с половиной веков, и в этих легендах я сильный, мудрый и добрый. И в таком качестве кое-чем им обязан. Если я не дарую им жизнь, кто будет славить меня? Кто будет воздавать мне хвалу у костров и отрезать для меня лучшие куски мохнатой гусеницы? Никто, Турл. А это все, чего стоит сейчас моя жизнь. Буди остальных. У тебя нет выбора.

— Хорошо, — проговорил Турл. — А если тебя не поддержат?

— Тогда я удалюсь от дел, и ты сможешь стать божеством, — сказал Джарри.

Каждый вечер, когда солнце спускается с багряного неба, Джарри Дарк смотрит на закат, ибо он не будет больше спать сном льда и камня, сном без сновидений. Он решил прожить остаток своих дней в неуловимо малом моменте Срока Ожидания и никогда не увидеть Алайонэл своего народа. Каждое утро на новой Станции в Бесплодных Песках его будят звуки, похожие на треск льда, дребезжанье жести, шорох стальной стружки. Потом приходят двуногие со своими дарами. Они поют и чертят знаки на снегу. Они славят его, а он улыбается им. Иногда тело его сотрясает кашель.

…Рожденный от мужчины и женщины, видоизмененный в соответствии с требованиями к форме кошачьих Y7, по классу холодных миров (модификация для Алайонэла), Джарри Дарк не мог жить ни в одном уголке Вселенной, что гарантировало ему Убежище. Это либо благословение, либо проклятье — в зависимости от того, как смотреть. Но как бы вы ни смотрели, ничего не изменится…

Так платит жизнь тем, кто служит ей самозабвенно.

Мартин Гарднер

Остров пяти красок

В Монровии, столице Либерии, есть только один магазин москательных товаров. Когда я сказал темнокожему клерку, сколько галлонов краски мне нужно, он поднял в удивлении кустистые брови и присвистнул:

— Не иначе, как вы собрались выкрасить гору, мистер!

— Нет, — заверил я его, — не гору, всего лишь остров.

Клерк улыбнулся. Он думал, что я шучу, но я действительно собирался выкрасить целый остров в пять цветов: красный, синий, зеленый, желтый и пурпурный.

Для чего мне это понадобилось? Чтобы ответить на этот вопрос, мне придется вернуться на несколько лет назад и объяснить, почему я заинтересовался проблемой “четырех красок” — знаменитой, тогда еще не решенной проблемой топологии. В 1947 г. профессор Венского университета Станислав Сляпенарский прочитал в Чикагском университете цикл лекций по топологии и теории относительности. Я в то время был преподавателем математического факультета Чикагского университета (теперь я уже доцент). Мы подружились, и мне выпала честь представить его членам общества “Мебиус” в тот вечер, когда он прочитал свою сенсационную лекцию о “нульсторонних поверхностях”. Читатели, следившие за научными достижениями Сляпенарского, должно быть, помнят, что он вскоре после этого скончался от сердечного приступа в начале 1948 г.

Проблема четырех красок была темой моей докторской диссертации. Еще до визита Сляпенарского в США мы обменялись с ним несколькими письмами, обсуждая различные аспекты этой трудной проблемы. Гипотеза о четырех красках утверждает, что для правильной раскраски любой карты (при которой любые две сопредельные страны, имеющие общий отрезок границы, будут выкрашены в различные цвета, и две страны не считаются сопредельными, если их границы имеют лишь одну общую точку) достаточно четырех красок. Страны на карте могут быть любых размеров и самых причудливых очертаний. Число их также может быть произвольным. Гипотеза четырех красок была впервые высказана одним из создателей топологии, Мебиусом, в 1860 г., и, хотя над решением ее бились лучшие умы в математике, ее не удавалось ни доказать, ни опровергнуть.[5]

По странному стечению обстоятельств проблема четырех красок была решена для всех поверхностей, кроме сферы и плоскости. В 1890 г. Р.Дж. Хивуд доказал, что для раскраски поверхности тора (поверхности бублика) необходимо и достаточно семи красок, а в 1934 г. Филип Франклин доказал, что шести красок достаточно для раскраски карт на односторонних поверхностях типа листа Мебиуса и бутылки Клейна.

Открытие Сляпенарским нульсторонних поверхностей возымело далеко идущие последствия для изучения свойств бутылки Клейна и произвело подлинный переворот в исследованиях по проблеме четырех красок. Как сейчас вижу мощную фигуру Сляпенарского, который, улыбаясь и теребя бородку, говорит: “Дорогой Мартин, если история топологии чему-нибудь и учит, то только тому, что следует ожидать самых неожиданных и удивительных связей между, казалось бы, совершенно не связанными между собой топологическими проблемами”.

Развивая некоторые идеи Сляпенарского, я опубликовал в 1950 г. свою известную работу с опровержением “доказательства” Хивуда (полагавшего, что для правильной раскраски карты плоскости необходимо и достаточно пяти красок). По всеобщему убеждению топологов, для правильной раскраски плоскости или сферы достаточно четырех красок, но в свете новейших достижений становится ясно, что от строгого доказательства такого утверждения мы в настоящее время находимся дальше, чем когда-либо.

Вскоре после выхода в свет моей работы по проблеме четырех красок мне довелось завтракать в университетском клубе “Четырехугольник” с профессором Альмой Буш. Альма — один из ведущих наших антропологов и, несомненно, самая красивая женщина во всем университете. Хотя ей уже под сорок, выглядит она молодо и весьма женственна. Глаза у нее светло-серые, и когда Альма о чем-то думает, то имеет обыкновение чуть-чуть их щурить.

Альма только что вернулась из экспедиции на небольшой остров, расположенный в нескольких сотнях миль от побережья Либерии у западной кромки африканского материка. Она возглавляла группу студентов-антропологов, изучавших нравы и обычаи пяти племен, населявших остров. Племена эти представляли огромный интерес для антрополога, так как их обычаи варьировались в необычайно широких пределах.

— Остров разделен на пять областей, — сообщила мне Альма, вставляя сигарету в длинный мундштук из черной пластмассы. Все они граничат друг с другом. Это важно для понимания тамошних нравов. Общность границ позволяет племенам поддерживать некое единство культур. Что с тобой, Марти? Почему у тебя такой изумленный вид?

Я застыл, так и не донеся вилку до рта, и медленно положил ее на стол.

— Потому, что ты рассказываешь невероятные вещи. Такого просто не может быть.

Альма была уязвлена:

— Чего не может быть?

— Пяти племен, имеющих общие границы. Это противоречит знаменитой проблеме четырех красок.

— Противоречит чему?

— Проблеме четырех красок, — повторил я. — Есть такая проблема в топологии. Хотя она никем не доказана и не опровергнута, никто не сомневается, что она верна.

Я принялся концом ложки чертить на скатерти, пытаясь объяснить Альме, в чем здесь дело. Альма быстро схватила общую идею.

— Может быть, у островных племен другая математика? высказала она предположение, щурясь от дыма сигареты.

Я покачал головой.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату