или так (если определен инициализирующий конструктор структуры данных):
// функция потока:
void* ThreadProc(void* data) {
DataParam copy(*(DataParam*)data);
// ... выполняется обработка, используя структуру copy
return NULL;
}
Но и этот код оказывается некорректен. При порождении потока нам нужно, чтобы инициализация копии переданных данных в теле функции потока произошла до того, как на очередном цикле оригинал этих данных будет разрушен или изменен. Но дисциплины диспетчеризации равнозначных потоков (в данном случае родительского и порожденного) в операционной системе никак не регламентируют (и не имеют права этого делать!) порядок их выполнения после точки ветвления — pthread_create()
.
Обеспечить актуальность копии переданных данных можно несколькими искусственными способами:
1. Передачей в качестве аргумента pthread_create()
специально сделанной ранее временной копии экземпляра данных, например:
if ( /* нечто */ ) {
// static обеспечивает неразрушаемость
static struct DataParam copy;
copy = data;
pthread_create(NULL, &attr, &ThreadProc, ©);
}
Этот способ иногда хорошо «срабатывает» для данных типа символьных строк, представленных в стандарте языка С (однако используется он не часто):
void* ThreadProc(void *data) {
...
// можно даже не делать копию - это уже копия:
printf('%s', (char*)data);
}
...
while (true) {
char *data = ... /* инициализация данных */;
if ( /* нечто */ )
pthread_create(NULL, &attr, &ThreadProc, strdup(data));
}
2. Для передачи параметра скалярного типа (char
, short
, int
), не превышающего размер указателя, очень часто в самых разнообразных источниках [1, 3] можно увидеть такой трюк, когда указателю присваивается непосредственное значение скалярной величины:
// функция потока:
void* ThreadProc(void* data) {
// ... выполняется обработка, используя значение параметра (char)data
return NULL;
}
// порождающий потоки код:
while (true) {
char data = /* инициализация параметра */;
if ( /* ожидаем нечто */ )
pthread_create(NULL, &attr, &ThreadProc, (void*)data);
}
Или даже так:
pthread_create(NULL, &attr, &ThreadProc, (void*)5);
pthread_create(NULL, &attr, &ThreadProc, (void*)(x + y));
Положительной стороной этого решения (которое тем не менее остается трюкачеством) является то, что параметр в ThreadProc()
передается по значению, то есть неявным копированием, и любые последующие манипуляции с ним не приведут к порче переданного значения. Таким образом, в ThreadProc()
нет необходимости создавать локальную копию полученного параметра.
3. Создание экземпляра данных в родительском потоке для каждого нового экземпляра создаваемого потока с гарантированным уничтожением экземпляра данных при завершении порожденного потока:
void* ThreadProc(void *data) {
// используем экземпляр data без копирования ...
...
delete data;
return NULL;
}
...
if ( /* нечто */ ) {
// создание экземпляра вместе с инициализацией
// (предполагаем, что для DataParam ранее определен
// копирующий конструктор):
pthread_create(NULL, &attr, &ThreadProc, new DataParam(data));
}
Это один из самых безошибочно срабатывающих способов, и единственным его недостатком является то, что объекты создаются в одной структурной единице (родителе), а уничтожаться должны в другой (потомке), которые иногда даже размещаются в различных файлах программного кода, а ошибки с парностью операций над динамической памятью обходятся очень дорого.
4. «Ручной» вызов диспетчеризации в порождающем потоке, по крайней мере при дисциплине по умолчанию для QNX — round-robin:
if ( /* нечто */ ) {
pthread_create(NULL, &attr, &ThreadProc, &data);
sched_yield();
}
Мы не можем произвольно изменять последовательность выполнения потоков (чем нарушили бы принципы диспетчеризации) и не можем утверждать, что при наличии многих потоков именно только что порожденный поток получит управление. Но после выполнения sched_yield()
мы можем гарантировать, что родительский поток будет помещен именно в хвост очереди потоков равных приоритетов, готовых к исполнению, и его активизация произойдет позже всех наличных в системе потоков, в том числе и последнего порожденного.
В этом месте внимательный читатель вправе оживиться: «Обманывают, обвешивают…». Да, описываемое здесь экзотическое решение не совсем корректно с позиции уже упоминавшегося определения Э. Дейкстры «слабосвязанных процессов» и независимости результата от относительных скоростей: в SMP-системе при количестве процессоров, большем, чем количество параллельных потоков, это решение не будет работать так, как мы ему предписываем. Но к настоящему времени такое «стечение обстоятельств» может быть либо чисто теоретически умозрительным, либо возникать на