Рис. 1.
Было достаточно понятно, что оперируя только фононами никакой сверхтекучести получить невозможно. Что же сделал Ландау в своей работе 1941 года? - Он предположил, что в гелии, как и в любой жидкости, может существовать не только поступательное, но и вращательное движение. Если такое движение тоже квантуется, то должны существовать соответствующие кванты вращательного движения, которые Ландау, с легкой руки Игоря Евгеньевича Тамма, назвал 'ротонами'. Свойства вращательного движения в жидкости существенно отличаются от свойств поступательного. Зависимость энергии от импульса для этих гипотетических ротонов тоже показана на рисунке 1. Предположив одновременное существование и фотонов, и ротонов, Ландау продемонстрировал, что в такой системе могут наблюдаться явления, чрезвычайно похожие на экспериментально обнаруженную сверхтекучесть.
Должен сказать, что, хотя само предположение о вращательном происхождении ротонов оказалось ошибочным, квантовые частички, обладающие всеми свойствами придуманных ротонов в гелии действительно оказались. Было ли это случайностью? - Отнюдь! Ландау нашел тот единственный вид спектра, который мог привести к сверхтекучести. Недоразумение с вращательным движением было исправлено в следующей работе Ландау (1948 год), где он проанализировал эксперименты В.П. Пешкова по распространению тепловых волн в сверхтекучем гелии и понял, что в гелии нет двух типов квантовых частичек и нет двух кривых энергетического спектра. Энергетический спектр сверхтекучего гелия выглядит, как одна единственная кривая и он показан на рисунке 2. Как вы видите, тут есть и линейная часть, соответствующая фононам, и ротонный минимум. Через многие годы, когда экспериментаторы научились изучать энергетические спектры по рассеянию нейтронов, кривая, показанная на рисунке 2 и опубликованная Ландау в его статье 1948 года, полностью подтвердилась.
Рис. 2.
Скажу еще несколько слов о ротонах. Уж больно удивительные это частицы. Наклон кривой, показанной на рисунке 2, дает нам скорость движения частиц в реальном пространстве. Если мы возьмем ротон, находящийся в самом минимуме, то увидим, что его скорость (наклон кривой) равна нулю, а импульс не только нулю не равен, но и очень велик. Как же, спросите вы меня, это может получиться, если импульс равен произведению скорости на массу? - Разбирать это здесь, увы, невозможно. Скажу только, что квантовая механика - это совершенно удивительная наука и в ней еще не такие 'чудеса' возможны.
Это я говорил о тех ротонах, которые соответствуют минимуму на кривой, но, если взять те, которые слева от минимума, будет еще забавней. У них импульс направлен в сторону, противоположную скорости. Если, например, такая частица стукнет вас в лоб, вы почувствуете сильный толчок... вперед. А, если вы начнете толкать такой ротон направо, то он полетит... налево. Не подумайте - это не теоретические домыслы. Все это наблюдалось в многочисленных экспериментах.
Потрясающая это наука - физика! И мне очень повезло, что я ее выбрал своей специальностью!
***
Для тех, кто не читал это физическое отступление, скажу, что расчеты фононной теплоемкости, произведенные Мигдалом и использованные в работе Ландау с соответствующей ссылкой, служили для вспомогательных сравнений теоретических результатов с экспериментальными данными и никакого отношения к объяснению явления сверхтекучести не имеют.
***
Теперь еще немного о физике. О той ее части, которая называется 'вихрями Абрикосова', и о роли Ландау в этой области. Дело в том, что эта тема стала, как я заметил, довольно популярным полигоном для переливания из пустого в порожнее. Один из вариантов этой истории я слышал от самого Алексея Алексеевича Абрикосова. Мне, правда, говорили, что в других компаниях он ее рассказывает несколько иначе, но сути дела это не меняет.
В 1957 году Абрикосов опубликовал работу, в которой предсказал существование 'квантовых вихрей' в сверхпроводниках второго рода, которые и стали называться 'вихрями Абрикосова'. Эта работа получила всеобщее признание и была в 2003 году удостоена Нобелевской премии совместно с В.Л. Гинзбургом, который был отмечен за теорию, которая во всем мире известна, как теория Гинзбурга-Ландау, и Леггетом, создавшим теорию сверхтекучести гелия-3.
В чем же здесь проблема? - В том, что Абрикосов утверждает, что идея квантовых вихрей в сверхпроводниках пришла ему в голову еще в 1953 году, но была отвергнута Ландау. Скорее всего, так оно и было. Что же, Ландау зажимал своих учеников? - Нет, конечно. Существуют разные подходы к изучению физики. Подход школы Ландау был достаточно строгим и требовал, чтобы идеи, особенно идеи новые, были достаточно обоснованы. Идея, пока она не обоснована, это не результат, а лишь отправная точка для начала работы. Не удалось обосновать идею, пусть даже правильную, нет работы. Как я думаю, это и был случай с вихрями Абрикосова. У Алексея Алексеевича была идея и идея совершенно правильная, но он не смог убедить Ландау в ее обоснованности. У него оставалась возможность работать над этим дальше и таки найти обоснование, которое удовлетворило бы Ландау, но он решил иначе и занялся другими, не менее интересными для него вещами. Не надо забывать, что в 1953 году Абрикосову было всего 25 лет, а авторитет Ландау был огромен.
***
Уже полностью написал этот кусок, когда мне попалось на глаза объяснение этой ситуации, написанное самим Алексеем Алексеевичем. Привожу его текст из книги Горобца, но с большими сокращениями. Не хочется слишком уж утомлять читателей.
'Абрикосов изложил свою версию событий (email, 11 Jan 2005):
'Из письма Лифшица может создаться впечатление, что я воспользовался идеей Ландау о квантовых вихрях и напечатал ее под своим именем...
Я впервые рассказал Ландау о своей работе в 1953-1954 годах. Он не согласился с ней, и, поскольку я не сумел придумать объяснения `на пальцах', я эту работу отложил до лучших времен. Когда же он прочитал работу Фейнмана 1955 года, то пришел в комнату, в которой находились я и Халатников, и сказал: `Конечно, Фейнман прав, а мы с Женькой заврались'...
... моя работа не была закончена, и написанной статьи у меня не было. Когда, после статьи Фейнмана, Ландау согласился с основной идеей, я закончил теорию и сравнил ее с экспериментами на сверхпроводящих сплавах. Получилось блестящее согласие. Когда Ландау услышал об этом, он воскликнул: `Я так и думал, что в сплавах каппа больше, чем единица на корень из двух!'... '
Мне кажется, что хотя я и не подглядывал, у меня получилось похоже. Хочу еще остановиться на последней фразе Ландау. Судя по работе, в которой излагается теория Гинзбурга-Ландау, у авторов была уверенность, что все существующие сверхпроводники являются сверхпроводниками первого рода, т.е.,