локализации, компания SDL заговорила уже о стратегии управления глобальными данными (Global Information Management).

Впрочем, тема развития систем переводческой памяти и вообще средств автоматизации переводческого труда достойна не одной статьи в компьютерном журнале и привлечения участников разных сторон этого процесса. Меня же со своей колокольни интересует чисто практический вопрос: где место переводчика в процессе локализации? Начнем с того, что наше занятие еще долго будет оставаться очень трудоемким. В то же время перевод занимает в среднем лишь 40% общих расходов на локализацию, а остальное приходится на долю таких операций, как обработка файлов, форматирование, управление базами данных терминов и переводческой памяти, управление проектом, утверждение готового материала в стране целевого языка. Переводчику на этом конвейере обычно достается файл в формате программы переводческой памяти, где уже учтены предыдущие переводы по этому и подобным проектам и встроена терминологическая база. Некоторые особо продвинутые агентства разделяют работу до конца и не заставляют переводчика овладевать несвойственными ему навыками. В этом случае обработка документа в translation memory выполняется в агентстве, а переводчик получает в файлах Word сегментированный текст, не требующий форматирования и размеченный по степени совпадения с предыдущими переводами, а также глоссарий терминов по данному проекту. Результат работы переводчика снова вставляется в ту же программу для обновления баз данных переводческой памяти и терминологии. Таким образом, круг замыкается, и переводчик возвращается к идеальному варианту работы в текстовом редакторе, имея возможность целиком и полностью сосредоточиться на лингвистических задачах.

Так что я пока не вижу в компьютере серьезного конкурента живому переводчику. Не обойтись им без нас. К сожалению.

ТЕХНОЛОГИИ: Из света в тень

Автор: Максим Стеклов

Нечасто случается, что технология, призванная решить определенные проблемы, не только их не решает, но и усугубляет. Но именно это случилось с технологией изображений с расширенным динамическим диапазоном (HDRI). Изначально предназначенная для повышения реалистичности фотографий и 3D-изображений, HDRI неожиданно стала удобным инструментом для творческого самовыражения и интересной игрушкой для многих любителей фотографии. Фотографы с удовольствием экспериментируют с новой технологией, превращая банальные пейзажи в изображения, напоминающие скорее картины, чем фотоснимки.

А если переведенные в пространство RGB HDR-кадры меньше похожи на реальность, чем обычные карточки с заваленными тенями и пересвеченными лицами... Наверное, это проблемы реальности. 

Дело о недостаточной точности

Прежде чем перейти к рассказу о HDRI, необходимо вкратце рассказать, как записываются, хранятся и отображаются цифровые изображения сегодня. А также о том, как фиксирует изображение человеческий глаз.

В модели RGB любой цвет кодируется тройкой целых чисел, описывающих соответственно интенсивность зеленого, синего или красного каналов. Например, черный цвет может быть представлен как (0, 0, 0), а белый – находящийся на противоположном конце шкалы – как (255, 255, 255). Таким образом, для отображения любой картинки у нас есть 16,7 млн. оттенков, а сама картинка называется восьмибитной (или 24-битной), потому что на каждый канал нам требуется 8 бит, а каждая точка изображения кодируется с помощью трех 8-битных чисел. Динамический диапазон (здесь: отношение максимальной интенсивности цвета к минимальной) такой цветовой модели составляет 28:1, или 256:1.

Для 16-битных RGB-изображений (когда на каждый канал отводится уже не один байт, а два) теоретический динамический диапазон заметно больше и составляет 216:1, или 65536:1. Это впечатляет, если не вспоминать, что человеческое зрение способно улавливать освещение от 10-6 кд/кв. м до 108 кд/кв. м (), то есть имеет абсолютный диапазон 1014:1 (правда, человеческий глаз не может регистрировать свет во всем диапазоне одновременно; максимальный охват составляет от 10000 до 30000 к 1).

Принципиальная недостаточность цветового пространства RGB усугубляется скромными аппаратными возможностями современных сенсоров и отображающих устройств. Реальная чувствительность сенсоров в цифровых фотокамерах, как правило, не превышает 1000:1 (теоретически она может быть и выше, в зависимости от матрицы, но ограничена сверху шумовыми эффектами). На выходе камера может давать хоть 12-битный, хоть 112-битный RAW, однако на динамический диапазон записанного в файл изображения это не повлияет, поскольку в нем просто физически нет необходимой информации.

Мониторов, способных корректно отобразить 48-битную картинку с заявленным динамическим диапазоном, скажем, 10000:1, сегодня также не существует (за редкими и дорогими исключениями, но о них ниже).

Дополнительный минус модели RGB (и, например, CMYK) в том, что она виртуальна и не привязана к реальным значениям, то есть является физически некорректной – и не может быть приведена к корректной модели без потерь, раз уж все показатели в ней задаются целыми числами, и их набор ограничен. Исправляет эту ситуацию схема HDRI (High Dynamic Range Imaging), в которой на каждый цветовой канал отводится 16 или 32 бита, а характеристики задаются не целыми, а вещественными числами, что позволяет полностью описывать доступный человеческому зрению диапазон с нужным уровнем детализации. Все остальные модели (включая RGB) называют моделями с низким динамическим диапазоном (Low Dynamic Range).

(Так получилось, что словосочетание динамический диапазон в контексте HDR зачастую используется для обозначения разных, хотя и близких понятий – и для яркостного диапазона сцены, и для описания диапазона цветовой модели, и как синоним фотографической широты датчика. Это вносит некоторую путаницу.)

Изначально главными пропагандистами и пользователями HDRI были специалисты по трехмерной графике (см., например, статью «Фотореализм» в «КТ» #628), поскольку использование HDR позволяет без потерь и ошибок рассчитать освещенность созданной сцены. И пусть большую часть этой информации отобразить не удастся – даже те крохи, которые дойдут до зрителя, все равно создадут должный эффект и сделают искусственную картинку более реалистичной. И сегодня аббревиатура HDR в применении к компьютерной графике означает прежде всего повышенную фотореалистичность изображения, близость к тому, что можно получить с помощью фотоаппарата или кинокамеры.

Как ни странно, применение схожей технологии в фотографии дает обратный результат. У фотографов, экспериментирующих с HDR, получаются безумно красивые снимки, не страдающие излишней реалистичностью. Собственно, первое, что приходит в голову при знакомстве с HDRI-фотографиями, – как же здорово эти люди научились рисовать в 3D.

Дело о недостаточной освещенности

Любой, кто хотя бы раз держал в руках фотоаппарат, сталкивался с тем, что при неверно подобранной экспозиции одни снимки получаются слишком темными, а другие – слишком светлыми. Однако даже оптимально выставленные параметры экспозиции не помогут, если у сцены, которую мы хотим снять, слишком широкий яркостный диапазон: или хорошо получатся детали, лежащие в тени, но засветятся светлые участки, или будут достоверно переданы светлые участки, но потеряются те, которые освещены

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату