равнина, а также инженерно-геологические условия закладки фундамента надо считать крайне неподходящими для любой крупной постройки.

Падающая Пизанская башня представляет собой колокольню, пристроенную к собору. Главное здание собора, сооруженное в XI веке, пострадало от проседания, которое произошло вскоре после того как строительство его было закончено. Однако собор наклонился незначительно, поскольку высота и ширина его различались ненамного. Возведение колокольни началось веком позже, в 1173 г. Через несколько лет, когда были готовы три этажа, башня уже наклонилась так сильно, что архитектор остановил строительство и покинул Пизу. Поскольку вес башни теперь не возрастал, она стабилизировалась и движение прекратилось, так что в 1275 г. другой архитектор решил продолжить строительство, ликвидировав наклон добавлением лишних слоев каменной кладки по осевшей стороне, другими словами, башне был искусственно придан изгиб. Однако башня продолжала наклоняться. Ее постройка закончилась только в 1350 г., после того как за работу взялся третий архитектор и на оседающую стену было добавлено еще несколько слоев кладки. С тех пор башня непрерывно продолжает наклоняться, и на сегодняшний день она отстоит от вертикали более чем на 5 м.

Движение, которому подверглась Пизанская башня, определяется техническим термином «неравномерная осадка». Общая осадка башни составляет около 2 м; чтобы попасть в ее входную дверь, надо спуститься по ступенькам, ведущим вниз. Но 2 м — это средняя цифра. В связи с наклоном южная сторона башни осела примерно на 3 м, а северная — на 1 м. Неодинаковая осадка первоначально была связана с небольшими изменениями в подстилающих отложениях. Когда появился наклон, сдвиг центра тяжести башни создал вращающий здание момент, который возрастает с увеличением наклона. Непосредственно под поверхностью земли залегает слой алевритов и глин плиоценового возраста. Этот слой мощностью 4,6 м очень пластичен и легко поддается сжатию. Простое лабораторное испытание этих осадков на физическую прочность сразу же позволило бы предсказать их уплотнение и осадку под действием веса башни. Фундамент башни состоял всего-навсего из кольцеобразной каменной кладки диаметром около 18 м, заложенной на 1,5 м ниже уровня земной поверхности. Башня поднимается на 55 м, т. е. ее высота в 3 раза превышает ширину основания. Если такую конструкцию установить на очень мягких алеврите и глине, то наклон неизбежен.

Поверхностный слой под башней постепенно переходит в слой песка, залегающий в интервале между 4,6 и 9,2 м. Песок, в сущности, не поддается сжатию, и он гораздо менее подвижен, чем глино- алевритовые пласты. Хотя песок и не является идеальным фундаментом, он почти наверняка играет положительную роль в сдерживании скорости осадки и сохранении относительно небольшого угла наклона башни. Можно даже предполагать, что 3-метровый слой глин и алевритов, залегающий между фундаментом башни и песком, к настоящему времени стал прочнее в связи с осушением при медленном уплотнении под нагрузкой. Этим и объясняется, почему башня все еще стоит вот уже в течение 700 лет. Однако слой песка, залегающий на глубине примерно 5—10 м, содержит тонкие глинистые и алевритовые зоны, которые становятся мощнее по направлению к югу. Их сильная подверженность сжатию объясняет первоначальный наклон башни. К тому же под слоем песка залегает более мягкая пластичная глина, прослеживающаяся до глубины 40 м, где она^подстилается горизонтомплот-ных песков. Движения в глино-алевритовом, песчаном и глинистом слоях могут начаться в любой момент, и тогда наклон башни должен увеличиться.

Что же ждет знаменитую Пизанскую башню? Она вполне может быть зафиксирована в ее теперешнем положении путем подведения фундаментов и закрепления их на слое песка, лежащем на глубине 39,7 м. Уже было испробовано впрыскивание жидкого цементного раствора в подстилающие осадки, однако это не дало заметных результатов. Надо искать какое-то другое смелое решение, причем необходимо учитывать тот факт, что работать придется под такой слабоуравновешенной постройкой. Предложен ряд проектов укрепления башни. При благоприятном стечении обстоятельств они будут успешно проведены в жизнь, в противном случае Пизанская башня сможет продержаться еще примерно столетие.

Проседание при удалении грунтовых жидкостей

Уплотнение рыхлых осадков, ведущее к проседанию грунта, почти невозможно предотвратить, если нагрузка, оказываемая на материал, обусловливается крупным строением. В большинстве случаев такое уплотнение сопровождается удалением воды из пор под давлением. Песок фактически не поддается сжатию, и вода из него вытесняется с трудом. Однако если межзерновая вода откачивается из песка и соседствующих с ним глинисто-алевритовых отложений, то падение гидростатического давления может повлечь за собой значительное уплотнение и последующие сдвиги грунта. Поскольку пески, особенно их несцементированные или слабо консолидированные разновидности, представляют собой высокопродуктивные водоносные горизонты, то грунтовые воды всегда активно откачивались из них. Во многих случаях это сильно влияло на состояние земной поверхности.

В долине Сан-Хоакин в центральной Калифорнии выпадает очень мало осадков. Интенсивное сельское хозяйство в этом районе обязано своим существованием ирригационным водам, большая часть которых откачивалась из осадков, подстилающих долину. Это были пески и грубозернистые алевриты, мощность которых местами превышала 600 м. Из этих пород в течение XX века активно извлекались воды, и в результате произошло проседание грунта, затронувшее площадь в несколько сотен квадратных километров, максимальная глубина просадки составила более 8 м. При понижении артезианского напора на 6–9 м грунт оседал на 30 см. Поскольку долина Сан-Хоакин — это район сельскохозяйственных земель, такое опускание, хотя оно и сопровождалось даже образованием трещин в грунте, не повлекло за собой катастрофических последствий. Забавно, что основное повреждение в долине Сан-Хоакин было нанесено ирригационным системам, которые сами и явились его причиной. Движение грунта разрушило многие скважины (ремонт скважины обходится до 1 млн. долл. в год), и ирригационные каналы с их очень низкими перепадами постоянно надо было восстанавливать. Чтобы прокладывать каналы через осевшие районы, не затопляя их, необходимо создавать длинные насыпи. Очевидно, единственным способом борьбы с проседанием в долине Сан-Хоакин является прекращение откачки грунтовых вод. Частичная их замена водами, которые подаются с гор, позволила значительно снизить скорость проседания грунта.

Подобное проседание в городских районах, особенно в тех, которые находятся почти на уровне моря, может иметь гораздо более разрушительные последствия. Так, значительная часть Токио пострадала от проседания, происходившего со скоростью 15 см в год в связи с извлечением воды из подстилающего горизонта алевритов. Многие крупные здания Токио были построены на более глубоко залегающих слоях плотной породы, поэтому создавалось впечатление, что они поднимаются, в то время как окружающая поверхность оседает. Движение было таким сильным, что к 1961 г. площадь около 40 км2 на окраине Токио оказалась ниже уровня моря. Эти районы пришлось защищать большими и дорогостоящими дамбами.

Сходные проблемы возникают и в Китае, например в городе Шанхай. Под Шанхаем залегают неконсолидированные осадки мощностью 300 м, содержащие большое число водоносных горизонтов, из которых выкачивается вода. Общая глубина просадки в районе судостроительной верфи за период между 1921 и 1973 г. составила 2,5 м. Участившиеся здесь случаи затопления вызвали попытки сократить скорость проседания. Так, проводилась закачка воды обратно в скважины во время влажных сезонов. Это делалось для поддержания уровня грунтовых вод в период сухих сезонов, когда грунтовые воды приходится откачивать.

При извлечении грунтовых вод просадке подвергаются не только пески и алевриты. Например, в Лондоне вода интенсивно откачивалась из мела, на котором стоит город, и в результате артезианский напор упал на десятки и даже сотни метров. Падение давления поровых вод в перекрывающих мел глинах Лондон-Клей вызвало проседание около 30 см. К счастью, этого недостаточно, чтобы повлечь за собой значительные последствия.

Проседание района вокруг города Саванна (штат Джорджия) происходит вследствие откачки вод из толщ известняка. Большинство известняков, даже если они трещиноватые и содержат водоносные горизонты, достаточно прочны, чтобы выдержать любую нагрузку. Однако третичные известняки Окала под

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату