Опасное воздействие подземных вод
При проходке туннелей под рекой в рыхлых, насыщенных водой осадках речного русла, когда буквально над головой находится грозный водный поток, возникает множество проблем. Впервые сооружение туннеля, пересекающего реку, было начато известным инженером Марком Брунелем и его сыном знаменитым Исам-бардом Брунелем в 1825 г. под Темзой в Лондоне. По совету геологов, которые пробурили множество разведочных скважин, проходка была начата всего на глубине 4 м под руслом реки, где, как предполагали, залегала плотная глина. Однако распределение осадков в русле реки почти всегда бывает очень сложным, н истинный их состав и строение редко можно предсказать на основании данных, полученных по разбросанным буровым скважинам. По мере того как велась проходка, на пути туннеля встречались всевозможные неуплотненные, подвижные и насыщенные водой осадки, для борьбы с которыми пришлось изобрести специальную систему защиты.
Два года спустя, когда горизонтальная выработка протянулась под рекой на 30 м, вода под давлением прорвалась через рыхлые слои, слагавшие ложе реки, и через образовавшееся отверстие устремилась в туннель. Чтобы осушить затопленный туннель, надо было запечатать отверстие в дне реки снаружи. Невероятно, но это удалось сделать, сбросив с барж мешки с глиной (несколько сотен тонн). После того как из туннеля выкачали воду, было признано, что кровля его достаточна прочна, и работы возобновились. Вода прорывалась в туннель еще раз, но, несмотря на все трудности, строительство все- таки было завершено.
Впоследствии, чтобы предотвратить проникновение речной воды через проницаемый грунт в туннель, расположенный под рекой, в него стали нагнетать под давлением сжатый воздух, и вода туда уже не поступала. Так были вырыты первые туннели под рекой Гудзон в Нью-Йорке и под рекой Клайд в Глазго. Практика показала, что в этом случае важно создать равновесие давлений, поскольку, если давление воздуха в туннеле было слишком низким, река «врывалась» в туннель, если же оно оказывалось чрезвычайно высоким, то воздух «вырывался» в реку. В обоих случаях таилась потенциальная опасность. Несомненно, самый безопасный метод проходки туннелей под реками — это сооружение их на достаточной глубине, где залегают коренные породы. Так, знаменитый туннель под рекой Мереей в Ливерпуле проходит в коренном песчанике, минуя несцементированные речные осадки. Даже в том случае, если порода консолидированная, следует опасаться, что туннель может войти в зону разломов, где породы обладают повышенной водопроницаемостью.
Туннель Сейкан, строительство которого в настоящее время ведется между островами Хонсю и Хоккайдо в Японии, является едва ли не самой дерзновенной из всех известных конструкций. Планируемая длина туннеля — 55 км; он пройдет в 135 м под морским дном в нарушенном комплексе изверженных и осадочных пород. В мае 1976 г. здесь произошла катастрофа: вода ворвалась в туннель на глубине 200 м ниже уровня моря. Первоначальный сток составил около 0,6 м3 в секунду, и вода затопила участок туннеля длиной в 3 км, прежде чем системы дренажа справились с потоком; лишь несколько недель спустя туннель был окончательно осушен.
В зоне разломов вода грозит катастрофами двух типов. Трещиноватые породы, присутствующие в этих зонах, могут играть роль каналов, по которым пойдет водоток, а тектонические глины, образовавшиеся в результате истирания пород при их движении по разлому, могут стать гидрологическими барьерами. Оба эти явления наблюдались одновременно в туннеле Сан-Хасинто в Калифорнии, где, как было установлено, порода, залегавшая над наклонными плоскостями разлома, была сильно нарушенной и высокопроницаемой, а по плоскостям разломов располагались слои водонепроницаемой жильной глинки.
Для ряда пород характерна очень высокая проницаемость, и они могут служить проводниками огромных потоков воды. Если при проходке туннелей или проведении горных работ глубоко под землей встречаются подобные породы, то они обычно бывают насыщены водой под высоким давлением. Песчаники, известняки, вулканический пепел и лава — наиболее проницаемые породы. Они характеризуются наивысшими содержаниями воды. Кроме того, слабая сцементированность песчаника может порождать дополнительные сложности. В 1959 г. при сооружении туннеля Авали в Ливане наткнулись на крутонаклонный пласт песчаника, в результате участок туннеля протяженностью в 2,5 км был затоплен и забит илом. Геологические исследования показывали присутствие песчаника, однако никаких сведений относительно свойств породы, находящейся в туннеле под давлением на глубине около 600 м, получено не было. Проводившееся в штреке туннеля искусственное дренирование при слабой сце- ментированности песчаника вызвало подпочвенную эрозию и кавитацию, что в свою очередь позволило большому количеству воды затечь в туннель. Когда, наконец, все это поняли, направление туннеля на участке более 1,5 км было изменено, чтобы он не проходил в песчанике.
Известняк — тоже высокопроницаемая порода, хотя ее свойства совершенно иные, чем у песчаника. Сам по себе известняк обычно почти водонепроницаем и все ж он пропускает огромные количества воды через имеющиеся в нем пустоты растворения. Дело усложняется еще и тем, что расположение подобных водоносных камер предсказать практически, невозможно.
Под рекой Северн был построен туннель, по которому шла железная дорога из Англии в Уэльс; этот туннель был частично проложен в каменноугольном известняке. В 1879 г. при проходке со стороны Уэльса на значительной глубине от поверхности земли была подсечена затопленная пещера в кровле известняка. Проходку, естественно, прекратили, но длительное время не могли справиться с затоплением. Оказалось, что пещера была соединена с подземным руслом реки Северн, и поэтому поступление воды в туннель продолжалось. Лишь после того, как было пройдено множество вертикальных и горизонтальных выработок, через которые велись дренирование и откачка, строительство туннеля было завершено. Аналогичные проблемы возникли и при строительстве туннеля Грехенберг в горах Юра (Швейцария), когда достигли участка, где вода пропитывала два маломощных прослоя сильно трещиноватого известняка. В одном из штреков приток воды был настолько сильным, что работы пришлось приостановить на два месяца, пока течение не ослабло.
Но не только проходчики туннелей сталкиваются с неприятными неожиданностями в кавернозных известняках. Эти породы нередко преподносят сюрпризы и горнякам при разработке месторождений полезных ископаемых. Медные рудники Морокоча в Перу и свинцовые рудники в горах Холкин в Уэльсе — вот лишь два примера месторождений, где постоянно возникают различные серьезные проблемы, связанные с опасностью затопления подземных выработок водами из известняковых пещер.
Однако самое сильное затопление произошло на крупнейшей золоторудной шахте мира в Южной Африке. Шахта Уэст-Драйфонтейн находится в самом сердце богатого месторождения золота Ранд в долине Вандерфонтейн близ Иоганнесбурга. Золото добывают из конгломератов, залегающих в мощной толще кварцитов. И кварциты, и конгломераты абсолютно водонепроницаемы. Золотоносные слои встречаются лишь на значительной глубине, между этими слоями и земной поверхностью располагается толща доломитов мощностью около 900 м; доломиты — породы трещиноватые, ячеистые, являющиеся прекрасными водоносными горизонтами. Гидрология грунтовых вод усложняется еще и присутствием вертикальных сиенитовых даек, секущих доломиты, кварциты и золоторудные тела. Дайки водонепроницаемы и представляют собой барьеры, препятствующие движению грунтовых вод.
Большинство выработок на шахте Уэст-Драйфонтейн располагается на ограниченном дайками участке, который известен под названием «блок Оберхольц». Для того чтобы сделать работы в шахте более эффективными и безопасными, этот участок был давным-давно осушен путем массированной откачки воды. В 1964 г. общая площадь шахты увеличилась к востоку в результате проходки подземных галерей в дайке и блоке Банк. Доломиты в блоке Банк обезвожены не были, но горные выработки располагали лишь в залегающих ниже доломитов водонепроницаемых кварцитах. Как и следовало ожидать, некоторое количество воды просачивалось в шахту, но ее удавалось откачивать. На шахте Уэст-Драйфонтейн имелось множество насосных установок и дренажных канав, которые отводили лишнюю воду в старые выработки, игравшие роль временных водохранилищ. Одной из задач этих мероприятий было устранить опасность внезапных прорывов воды, которые повторялись периодически.
Так продолжалось до 26 октября 1968 г. В тот день в 9 ч утра кровлю выработок блока Банк разорвала трещина, в которую устремился поток воды. Этого никто не ожидал. Сток воды из трещины составил 4,5 м3 в секунду, что в 6 раз превысило обычно существовавший здесь суммарный сток. После образования трещины объем воды, поступавшей в шахту, в полтора раза превысил общую производительность