NewNode^.hiKey := NewStr(aKey);

{$ELSE}

NewNode^.hiKey := aKey;

{$ENDIF}

NewNode^.hi Item := aItem;

NewNode^.hiNext := PHashedItem(Parent)^.hiNext;

PHashedItem(Parent)^.hiNext := NewNode;

inc(FCount);

{увеличить таблицу, если значение коэффициента загрузки превышает максимальное значение}

if (FCount > (FMaxLoadFactor * FTable.Count)) then

htcGrowTable;

end;

Прежде всего, мы вызываем подпрограмму htcFindPrim. Она выполняет такую же операцию, как и htllIndexOf, при использовании линейного зондирования: предпринимает попытку найти ключ и возвращает индекс ячейки, в которой он был найден. Однако этот метод создан с учетом применения связных списков. Если поиск ключа выполняется успешно, метод возвращает значение 'истина', а также индекс ячейки хеш- таблицы и указатель на родительский узел элемента в связном списке. Почему родительский? Что ж, если вспомнить сказанное в главе 3, основные операции с односвязным списком предполагают вставку и удаление узла за данным узлом. Следовательно, целесообразнее, чтобы метод htcFindPrim возвращал родительский узел узла, в который выполняется вставка.

Если ключ не найден, метод htcFindPrlm возвращает значение 'ложь' и индекс ячейки, в которую нужно вставить элемент, и родительский узел, за которым его можно успешно вставить.

Итак, вернемся к методу Insert. ЕстестЁенно, если ключ был найден, метод генерирует ошибку. В противном случае мы выделяем новый узел, устанавливаем элемент и ключ, а затем вставляем элемент непосредственно за данным узлом.

Если при этом коэффициент загрузки хеш-таблицы достигает максимального значения, мы расширяем хеш-таблицу.

Как легко догадаться, метод Delete работает аналогично.

Листинг 7.15. Удаление элемента из хеш-таблицы со связыванием

procedure TtdHashTableChained.Delete(const aKey : string);

var

Inx : integer;

Parent : pointer;

Temp : PHashedItem;

begin

{поиск ключа}

if not htcFindPrim(aKey, Inx, Parent) then

htcError(tdeHashTblKeyNotFound, 'Delete');

{удалить элемент и ключ из данного узла}

Temp := PHashedItem(Parent)^.hiNext;

if Assigned(FDispose) then

FDispose(Temp^.hiItem);

{$IFDEF Delphi1}

DisposeStr(Temp^.hiKey);

{$ELSE}

Temp^.hiKey := '';

{$ENDIF}

{разорвать связь с узлом и освободить его}

PHashedItem(Parent)^.hiNext := Temp^.hiNext;

FNodeMgr.FreeNode(Temp);

dec(FCount);

end;

Мы предпринимаем попытку найти ключ (если он не найден, метод генерирует ошибку), а затем избавляемся от содержимого возвращенного элемента и удаляем его из связного списка. Обратите внимание на простоту кода обеих методов, Insert и Delete, обусловленную наличием заглавного узла в каждом связном списке. Не нужно беспокоиться о том, является ли родительский узел нулевым. Метод htcFindPrlm всегда будет возвращать допустимый родительский узел.

Метод Clear очень похож на метод Delete, за исключением того, что мы просто стандартным образом удаляем все узлы из каждого связного списка (естественно, за исключением заглавных узлов).

Листинг 7.16. Очистка хеш-таблицы TtdHashTableChained

procedure TtdHashTableChained.Clear;

var

Inx : integer;

Temp, Walker : PHashedItem;

begin

for Inx := 0 to pred(FTable.Count) do

begin

Walker := PHashedItem(FTable.List^[Inx])^.hiNext;

while (Walker <> nil) do

begin

if Assigned(FDispose) then

FDispose(Walker^.hiItem);

{$IFDEF Delphi1}

DisposeStr(Walker^.hiKey);

{$ELSE}

Walker^.hiKey := '';

{$ENDIF}

Temp := Walker;

Walker := Walker^.hiNext;

FNodeMgr.FreeNode(Temp);

end;

PHashedItem(FTable.List^[Inx])^.hiNext := nil;

end;

FCount := 0;

end;

Метод Find прост, поскольку основная часть работы выполняется вездесущим методом htcFindPrim.

Листинг 7.17. Поиск элемента в хеш-таблице со связыванием

function TtdHashTableChained.Find(const aKey : string; var aItem : pointer): boolean;

var

Inx : integer;

Parent : pointer;

begin

if htcFindPrim(aKey, Inx, Parent) then begin

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату