содержит наиболее длинную LCS, и используем это значение в качестве значения данной ячейки. Если две длины равны, можно выбрать любую из них. Однако мы будем придерживаться правила, что предпочтительнее выбирать LCS, соответствующую ячейке, которая расположена слева. Этот выбор обусловлен тем, что как только путь через матрицу, обеспечивающий определение LCS обеих строк, вычислен, удаления из первой строки выполняются раньше вставок во вторую строку.

Обратите внимание, что приведенный в листинге 12.24 метод требует постоянного времени для обработки двух строк, независимо от степени их совпадения или несовпадения. Если длина строк равна, соответственно, n и т, то время, требуемое для выполнения основного цикла, будет пропорционально произведению n * m, поскольку таковым является количество ячеек, значения которых нужно вычислить. (помните, что ячейка, для которой действительно нужно получить ответ - последняя, значение которой должно вычисляться;

она расположена в нижнем правом углу матрицы).

Алгоритм, реализованный с применением рекурсивного метода, приведен в листинге 12.25. Рекурсивная подпрограмма кодируется в виде функции, которая возвращает длину LCS для конкретной ячейки, заданной индексом строки и столбца (которые, в конечном счете, представляют собой индексы, указывающие на строки From и То).

Листинг 12.25. Рекурсивное вычисление LCS

function TtdStringLCS.slGetCell(aFromInx, aToInx : integer): integer;

var

LCSData : PtdLCSData;

NorthLen: integer;

WestLen : integer;

begin

if (aFromInx = 0) or (aToInx = 0) then

Result := 0

else begin

LCSData := FMatrix[ aFromInx, aToInx];

if (LCSData <> nil) then

Result := LCSData^.ldLen else begin

{создать новый элемент}

New(LCSData);

{если два символа совпадают, необходимо увеличить значение счетчика относительно элемента, расположенного к северо-западу от данного, т.е. предшествующего элемента}

if (FFromStr[aFromInx] = FToStr [aToInx]) then begin

LCSData^.ldPrev := ldNorthWest;

LCSData^.ldLen := slGetCell(aFromInx-1, aToInx-1) + 1;

end

{в противном случае текущие символы различаются: необходимо использовать максимальный из элементов, расположенных к северу и западу (выбор элемента расположенного к западу предпочтительнее)}

else begin

NorthLen := slGetCell(aFromInx-1, aToInx);

WestLen := slGetCell(aFromInx, aToInx-1);

if (NorthLen > WestLen) then begin

LCSData^.ldPrev := ldNorth;

LCSData^.ldLen := NorthLen;

end

else begin

LCSData^.ldPrev := ldWest;

LCSData^.ldLen := WestLen;

end;

end;

{установить значение элемента матрицы}

FMatrix[aFromInx, aToInx] := LCSData;

{вернуть длину данной LCS}

Result := LCSData^.ldLen;

end;

end;

end;

Первое существенное различие состоит в том, что не нужно генерировать нулевые значения для ячеек, расположенных вдоль верхней и правой сторон матрицы. Теперь эту задачу выполняет простой оператор If. (Честно говоря, в итеративном варианте вычисления LCS можно было бы обойтись без вычисления этих значений, но в этом случае внутренний код цикла оказался бы значительно сложнее для понимания и поддержки. Поэтому для простоты мы заранее вычисляем значения этих ячеек.) Если значение ячейки уже вычислено, мы просто возвращаем ее длину LCS. Если нет, необходимо выполнить ту же проверку, что и в предыдущем случае: совпадают ли два символа? Если да, то необходимо добавить единицу к значению LCS ячейки, расположенной к северо-западу от данной. Если нет, необходимо использовать большее из значений длины LCS ячеек, расположенных к северу и к западу от текущей. Естественно, эти значения LCS вычисляются в результате рекурсивных вызовов этой подпрограммы.

Применив обе версии (итеративную и рекурсивную), я сгенерировал матрицу для вычисления LCS слов 'illiteracy' и 'innumeracy'. (Длина LCS этих слов равна 6 и выглядит как 'ieracy'.) Результаты этих немалых трудов приведены в таблицах 12.2 и 12.3. При использовании рекурсивной версии многие ячейки вообще не вычисляются (они помечены знаком вопроса). Эти ячейки образуют часть заключительной LCS.

Таблица 12.2. Итеративная матрица LCS слов 'illiteracy' и 'innumeracy'.

Таблица 12.3. Рекурсивная матрица LCS слов 'illiteracy' и 'innumeracy'.

Итак, мы получили матрицу, которая определяет наиболее длинную общую подпоследовательность. Как ее можно использовать? Одна возможность связана с реализацией подпрограммы, которая создает текстовый файл, описывающий изменения, называемые последовательностью редактирования (edit sequence). Это может упростить создание аналогичной подпрограммы для текстового файла - что, собственно, является конечной целью данного раздела.

Код реализации простой технологии обхода, которая может быть приведена в соответствие с нашими потребностями, показан в листинге 12.26. Подпрограмма содержит два метода: первый вызывается пользователем с указанием имени файла, а второй представляет собой рекурсивную подпрограмму, которая записывает данные в файл. Весь основной объем работы выполняется во второй подпрограмме. Поскольку в матрице путь LCS кодируется в обратном направлении (т.е. для определения пути необходимо начать с конца и продвигаться к началу матрицы), мы создаем метод, который вначале вызывает сам себя, а затем записывает данные, соответствующие текущей позиции. Необходимо обеспечить прерывание выполнения рекурсивной подпрограммы. Это соответствует случаю, когда подпрограмма вызывается для ячейки (0,0). В этом случае никакие данные не записываются в файл. Если индекс строки То равен нулю, мы выполняем рекурсивный вызов, перемещаясь вверх по матрице (индекс строки From уменьшается), и предпринимаемым действием должно быть удаление символа из строки From. Если индекс строки From

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату