решали задачу брони, остроумно объединяя ее с задачей рычажной подвижности, требовавшейся новым мышцам. С другой стороны наружные панцирные скелеты насекомых и ракообразных прекрасно решали и задачу устойчивости, не нуждаясь для нее ни в какой помощи со стороны мышц. Это хорошо подтверждается простым опытом. Если осторожно усыпить насекомое или ракообразное, например поднеся к их голове ватку с эфиром или бензином, то усыпленное или даже убитое этим способом животное полностью сохраняет свою устойчивость: продолжает стоять, как и стояло. Для сравнения напомним, что усыпленное или умерщвленное с любой осторожностью позвоночное животное неминуемо падает. Таким образом, у членистоногих мышца полностью разгружена от каких бы то ни было побочных обязанностей, вроде только что упомянутых опор ных, и занимается только своим основным делом, к которому она лучше всего приноровлена, – активными сокращениями. Это кладет известный отпечаток и на ее микроскопическое строение, заметно упрощая его в подробностях сравнительно с мышцами у позвоночных.

То, что мы в нашем сделанном выше уподоблении назвали проектом под девизом Vertebrata и что представляет собою скелетно-мышечное устройство позвоночных,
решает возникшую задачу принципиально другим, почти обратным путем. Жесткие звенья – кости, сочлененные между собою в цепочки, – помещаются у этих животных в самой середине каждого звена тела, по его продольной оси. Мышцы облегают его снаружи, со всех тех сторон, где они по условиям подвижности могут понадобиться. Если у суставов имеются стороны, в которые они не могут двигаться (например, локтевой сустав человека – сгибаться в стороны, а не вперед и назад), то с этих сторон вместо более дорогой и нежной мышечной ткани размещается более грубая связочно-сухожильная. Так или иначе, но каждый сустав закреплен со всех сторон гибкими растяжками – мышцами или связками, так сказать расчален ими, очень похож на то, как расчаливают высокие мачты судов или радиопередаточных станций.
Такой принцип мышечного монтажа выглядит поначалу менее удобным и ясным, чем тот, который имеет место у насекомых, и загружает мышцу кроме ее прямых функций двигателя еще добавочной опорной (так называемой статической) работой, к которой к тому же поперечнополосатая мышца не слишком хорошо приспособлена. Зато получается явный выигрыш по части гибкости — и пассивной, и активной. Сравните речного рака в его неуклюжих доспехах с рыбкой или змейкой, гибкими, как их бесскелетные предшественники – мягкотелые. Вспомним, что самые древние из позвоночных, рыбы, первыми появившиеся на свет во времена описываемого нами «великого конкурса», в сущности, еще не имели настоящих конечностей. Эти органы выработались у позвоночных позже; в начале же их бытия на Земле они состояли почти целиком из одного позвоночного столба, несшего на себе многокостный, еще не сросшийся череп и гибкую грудную клетку. Позвоночник же, составленный из множества подвижно соединенных члеников, обеспечивал им возможность самых богатых и свободных изгибаний.
Пороки поперечнополосатой мышцы
Еще одно обстоятельство подкрепляет наше заключение о том, что принцип поперечнополосатой мышцы был найден как-то разом и почти случайно, хотя биологическая потребность в нем уже давно назрела в высшей степени. Набредя на этот принцип, жизнь как будто ухватилась за него и сразу, без всяких переделок и вариантов, применила к оснащению подвижных скелетов. Дело в том, что при более внимательном рассмотрении физиологии поперечнополосатой мышцы она оказывается не таким-то удобным, а, главное, в целом ряде отношений просто мало подходящим к своему назначению органом. Очевидно, ее принцип обладал чем-то столь положительным, что жизнь на первых порах уверовала в него слепо, как будто не замечая его очень крупных недостатков; а позднее, когда они в полной мере обнаружились, точно спохватилась, что в свое время не озаботилась сформулировать как следует необходимые «технические условия» устройства и работы новой мышцы. (Мы и здесь выражаем надежду, что нам будут извинены наши образные олицетворения, которые мы снова отметим в ближайшем абзаце изложения, но которые помогут нам правильно подчеркнуть важнейшие факты и расставить, как говорится, точки над i). Поперечнополосатая мышца в том виде, как она вылилась из рук эволюции, оказалась кое в чем очень важном до такой степени мало отвечающей своему назначению, что пришлось поспешно и очень компромиссно искать способы для ее прилаживания. Другого двигателя все равно не находилось.
Во-первых, оказалось, что манера сокращения поперечнопо лосатой мышцы, точнее сказать – ее микроскопически малой активной, составной частички, анизо-элемента (см. выше), совершенно не подходит к тому, что было бы биологически нужно. Эта манера, как показывают точнейшие записи на современных приборах, – грубый и резкий рывок, настолько внезапный и сходный со взрывом, что возникала прямая опасность искрошить скрепленные с такою мышцей кости. Компромисс, который выработался как мера борьбы с этой никуда не пригодной резкостью, состоял в том, что микроскопические анизо-элементы были переслоены такими же крохотными элементиками упругой сухожильной ткани (так называемыми изо-элементами). Мышечное волокно получило вид, похожий под микроскопом на столбик из чередующихся между собою двадцати-и трехкопеечных монет, соответствующих размещенным там по очереди анизо – и изо-элементам. Эти последние играют роль упругих буферов, или, как теперь говорят, амортизаторов, для яростных рывков анизодвигателей: они растягиваются во время рывков и затем уже более плавно и постепенно укорачиваются вновь, помогая мышце совершать ее работу. Чередование в каждом волокне анизо-и изо-элементов, обладающих разной окраской и качеством прозрачности, и придает волокну тот поперечноисчерченный вид, который обусловил название всей мышцы.
Во-вторых, анизо-элементы совершенно не способны к длительным сокращениям, более того – к какой бы то ни было регулировке их длительности.
Все, что способен дать анизо-элемент, – это чрезвычайно короткую вспышку напряжения и сокращения: в мышцах человека она продолжается обычно не более одной тысячной доли секунды. Хуже всего то, что после каждой сократительной вспышки анизо-элемент как-то истощается, или устает, или еще что-то с ним происходит, пока еще совершенно не объясненное физиологией, но только вслед за каждой молниеносной вспышкой анизо элементу нужно двойное или тройное время сравнительно с продолжительностью самой вспышки, чтобы оправиться от нее и возвратить себе дееспособность. В ближайшие мгновения, следующие за вспышкой возбуждения, анизо-элемент абсолютно не возбудим ни для каких, хотя бы самых оглушительных, раздражений. Ничего подобного не наблюдалось с послушной и легко управляемой гладкой мышечной клеткой древнего образца.
Для того, чтобы преодолеть это неудобное свойство анизо-элементов, потребовался новый компромисс. Нервная система приладилась посылать в поперечнополосатую мышцу целые серии импульсов возбуждения, пулеметно мчащихся друг за другом (50 – 200 раз в секунду). Каждая вспышка сокращения анизо-элемента протекает все еще гораздо быстрее промежутка между двумя последовательными импульсами, но тут помогают прежде всего упругие изопрокладки, замедляющие в несколько раз каждое сокращение, а затем и ряд других вспомогательных приспособлений. Слиянию пулеметной дроби сокращений анизо-элементов в плавные движения помогает и вязкость той студенистой полужидкости (так называемой саркоплазмы), которая наполняет «капоты» мышечных волоконец, и