and discursive mind recognizes and puts together the finest and most general resemblances. Both kinds however easily err in excess, by catching the one at gradations, the other at shadows.”
Whenever somebody tells you a story, you react less to what each separate sentence means than to how this differs from what you expected—and this also applies to our other perceptions. For example, if you plunge your hand into a bowl of cold water, you’ll feel a severe sensation of chill—but soon this will totally disappear, just as a steady pressure on your skin will quickly seem to diminish in strength. It is the same with new odors or tastes, or with the onsets of continuous sounds: at first those sensations may seem intense but then they rapidly fade away. We have many different names for this, like
Thus most of our external sensors react only to rather rapid changes in conditions. However, we also have additional sensors that do not fade away, but keep responding to certain particular harmful conditions; see §§Alarms.
Now let’s apply the same idea—of a system that ‘mainly reacts to change’—to a brain with a tower of cognitive levels. This could help to explain some phenomena. For example, after you start a trip on a train, you’re aware of the clacking of wheels on the track—but (if that clacking is regular) then you will soon stop noticing this. Perhaps your A-Brain is still processing it, but your B-brain has stopped reacting to it. It will be much the same for the visual scenes; when the train enters a forest, you’ll start seeing trees—but soon you’ll start to ignore them. What could cause such meanings to fade?
It’s much the same with repeated words; if someone says ‘rabbit’ one hundred times, while trying to focus on what that word means, then that meaning will shortly disappear—or be replaced by some other one. And similarly the same thing happens when you listen to popular music: you’ll often hear dozens of nearly identical measures, but the details of these soon fade away and you no longer pay any attention to them. Why don’t we object to that repetitiousness?
This could be partly because we tend to interpret such ‘narratives’ in terms of how situations change on successively larger scales of time. In the case of most music, this structure is clear: we begin by grouping separate notes into ‘measures’ of equal length, and we then group these into larger sections, until the whole composition is seen as a storylike structure.[116] We do this in vision and language, too—although with less repetitiousness— by grouping collections of smaller events into multiple levels of events, incidents, episodes, sections, and plots. However, we see most clearly in musical forms:
Then
Finally, our
Now suppose that each higher level in the brain mainly reacts to the changes below it, but over some larger scale of time. If so, then when signals repeat at level A, the B-Brain will have nothing to say. And if the signals that go up to B form a sequence that repeats—so that the B-brain keeps seeing a similar pattern—then the C-Brain will sense a ‘constant condition,’ and thus have nothing to say to the level above it.
This could explain some common experiences because any repetitive signal would tend to partly
(Why might our brains have evolved to work this way? If some condition has been present for long—and nothing bad has happened to you—then it probably poses no danger to you; then so you might as well not pay attention to it and apply your resources more gainfully.)
However, this could also lead to other effects. Once a level gets freed from control by repetitive signals that come from below it, then it could start to
Also, when repetitive signals anesthetize some parts of your brain, this could release some other resources to think in new, unusual ways. This could be why some types of meditation can thrive on repetitive mantras and chants. It also could contribute to what making some music so popular: by depriving the listener of some usual inputs, that repetitiousness could free higher-level systems to pursue their own ideas. Then, as suggested in §5-8, they could send down some ‘simuli’ to make some lower level resources simulate some imaginary fantasies.
Rhythmic and Musical Differences
“Music can move us through brief emotional states, and this can potentially teach us how to manage our feelings by giving us familiarity to transitions between the states that we know and thus gain greater confidence in handling them.”