движении. Потоки в земных горных реках обычно расширяются вниз по склону. Для Земли это естественно. Так же ведут себя камнепады (сели), оставляя расширяющиеся следы (рис. 11). Сужающиеся марсианские овраги не могли возникнуть под действием камнепада или крупномасштабного селя. Тем более они не могли образоваться под действием пылевых оползней, которые, как можно видеть внизу на рис. 10, бесследно засыпают все овраги. С орбитальных аппаратов продолжали поступать всё новые снимки странных объектов. В возникшей (и всё ещё продолжающейся) дискуссии многие авторы стараются избегать в своих работах даже упоминания «священной коровы», простите — источников грунтовой воды, как среды, сформировавшей овраги, промоины и другие образования такого рода на Марсе. Видеть «голого короля» оппоненты не хотят. Какие только варианты не предлагались. Например, популярной стала гипотеза, что именно CO2 в чистой форме или в виде клатратов может быть той жидкостью, потоки которой формируют овраги и протоки на склонах Марса. Или жидкий метан. Или что-то ещё. Гипотеза струящегося песка тоже имела (и имеет) много сторонников; кстати, сухой мелкий песок действительно растекается, как вода.

Однако сторонники потоков воды провели всестороннее исследование гипотезы о жидкой углекислоте и других средах. Были детально рассмотрены практически все её аспекты и сделаны убедительные выводы. Например, в аккуратной работе Стьюарта и Ниммо, вышедшей в 2002 году, результаты сформулированы следующим образом: «Мы нашли, что ни конденсированный СО2, ни клатраты CO2 не могут быть накоплены в коре Марса в достаточных количествах… Таким образом, мы заключаем, что овраги не могут быть образованы (жидким. — Л. К.) СО2. В свете этих результатов потоки жидкой воды остаются предпочтительным механизмом формирования свежих протоков на поверхности».

Рис. 12. Одиночные ключи грунтовых вод выходят на склоны. Потоки замерзают на ложе из морозного грунта, пройдя несколько сотен метров.

Рис. 13. Склон небольшого кратера в том же районе (кратер Ньютона), что и на рис. 10, с многочисленными извилистыми оврагами и осыпями сыпучего материала на дне. (MGS МОС Release No. МОС2-317. NASA/JPL/MSSS.) Извилистые овраги свидетельствуют, вероятно, о каменистом склоне.

Изображение склона с одиночными нитевидными «исчезающими» оврагами приведено на рис. 12. Узкие овраги или протоки довольно часто встречаются в полосе марсианских широт от 30°N до 70°S. Они действительно похожи на склоновые русла земных рек и не перекрываются более поздними образованиями (например, песчаными дюнами). Ширина (и, вероятно, глубина) оврагов близка к 10–20 м, а протяжённость составляет от сотен метров до километров. Сотни снимков, сделанных с орбитальных аппаратов, показали, что источники следов грунтовых вод находятся на крутых склонах долин и кратеров, на глубине от 150 до 500 м ниже уровня окружающей поверхности. По-видимому, именно на этих глубинах в некоторых районах происходит таяние грунтовых льдов, и вода выходит на склоны. На рис. 13 представлен ещё один вид района с подобными оврагами. В отличие от рис. 10 здесь овраги извилистые. На Земле это значило бы, что на пути потока расположены крупные глыбы, а склон пологий. Ширина оврагов — от единиц метров до 10– 20 м, они тоже не расширяются, а сужаются вниз по склону и исчезают.

Рис. 14. Тормозные ракетные двигатели аппарата «Феникс» (фото 2008 года) сдули тонкий слой песка и пыли и обнажили сплошной слой льда.

Именно потоки (воды или какой-то другой жидкости) легко могли бы образовать такие промоины, но как объяснить их странный вид? Почему следы потоков теряются на склоне? Ускорение свободного падения на Марсе почти втрое меньше земного, но это, конечно, не значит, что вода течёт вверх. На первый взгляд такое сужение оврагов кажется парадоксальным, если они образованы потоком. Но для Марса можно предложить простое объяснение этого парадокса: низкие температуры. Если грунтовая вода действительно образовала ключ и поток вышел на поверхность, устремившись вниз по морозному склону, то в условиях Марса размеры развивающейся промоины будут зависеть, прежде всего, от температуры поверхности и температуры потока. Если температура поверхностного слоя днём составляет, в зависимости от широты на Марсе, от —60 до —10 °C или ниже, поток, спускаясь по склону, должен постепенно и впитываться в сухой морозный грунт, и замерзать. Образуется ложе канала из промёрзшего грунта, по которому оставшаяся часть потока устремляется дальше, впитываясь, наращивая промёрзшее ложе, охлаждаясь и продолжая замерзать. Поэтому, в отличие от земных склоновых рек, потоки на Марсе сужаются. При переходе воды с температурой 0 °C в фазу льда выделяется 80 ккал/кг. Теплоёмкость марсианского грунта невелика, поэтому промёрзшее ложе потока может получиться достаточно толстым, если ключ существует достаточно долго. Как ведёт себя грунт Марса при увлажнении и сколько при этом поглощается тепла, точно неизвестно, но баланс отдаваемого тепла должен включать его потери в образующемся ледяном ложе канала, а также более медленные излучение и поглощение атмосферой. Температура истекающей воды также неизвестна, но высокой она быть не может, вероятно, около 10 °C.

Сужающиеся по склону овраги известны и на Земле в районах пустынь и связаны с непосредственным поглощением (впитыванием) воды сухим тёплым грунтом, что не имеет ничего общего с мгновенным образованием тонкого ледяного ложа потока на Марсе. Более близким аналогом могут быть потоки от гейзеров, бьющих в кальдере вулкана Эребус в Антарктиде.

Часто утверждается, что жидкая вода на поверхности Марса немедленно испаряется. Это недоразумение: роль испарения пренебрежимо мала, и её нетрудно оценить. Пусть атмосферное давление в данном районе 8 мбар, тогда температура кипения воды, согласно диаграмме на рис. 5, составляет 4 °C. При температуре воды в ключе, например, 10 °C вода в потоке будет кипеть, постепенно уменьшая своё теплосодержание и остывая. Когда температура упадёт до 4 °C (или до 0 °C при давлении 6,1 мбар), каждый килограмм воды потеряет 6 ккал и кипение прекратится. Чтобы найти, какая доля потока испарится с понижением его температуры до 4 °C, следует эти 6 ккал разделить на теплоту парообразования (в земных условиях это 540 ккал/кг, на Марсе незначительно больше). Расчёт показывает, что в пар превратится всего 1,1 %, то есть сколько-нибудь заметная часть истекающей воды испариться не может, для этого негде взять необходимую теплоту парообразования. Реальные процессы могут быть сложнее, так как на крутых склонах поток несёт с собой значительные массы грунта, что уменьшает его теплосодержание.

Когда дневная температура грунта становится положительной, как это наблюдалось с аппарата «Пасфайндер», потоки способны распространяться на большие расстояния, но их обильность также должна уменьшаться с расстоянием из-за расхода воды на увлажнение песчаного грунта. Заметную роль в протяжённости потоков может играть солёность грунтовой воды Марса, понижающая точку замерзания.

Источником жидкой воды может быть только таяние подпочвенного льда (или вечной мерзлоты). Глубина залегания подпочвенного льда оценивается различно, в среднем от сотни метров до километра, а

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату