Таким образом, вы должны бороться со следующими трудностями:

— точность вашего компьютера. Вам нужно иметь возможность делать вычисления с повышенной точностью, а это очень дорогостояще по времени;

— число требуемых операций;

— доверие к вашей программе. Если ваша машина сообщает вам, что

9873564383 = 631181 * 15643,

то вы, вероятно, сможете проверить этот результат на вашем микрокалькуляторе, А если компьютер сообщит вам, что 9873564401 — простое число, то как вы это проверите? Проделав вычисления на руках?

Вот основы метода Ж.-М. Полларда [POL].

По данному числу n (нечетному натуральному) строится последовательность по описанному ниже правилу:

— первый член последовательности равен 2;

— следующий за x элемент равен x? ? 1 по модулю n (остатку от деления x? ? 1 на n).

Оказывается, что эта последовательность периодична. Это легко видеть. Остаток от деления на n есть неотрицательное целое, меньшее n, поэтому не может быть более n различных остатков. Поэтому неизбежно, что как только число членов превысит n, среди членов последовательности мы получим два одинаковых, что и означает периодичность последовательности. Но она может оказаться периодической с намного более коротким периодом, чем n. Вот, например, последовательность для n = 137:

a1 = 2

a2 = 3

a3 = 8

a4 = 63

a5 = 132

a6 = 24

a7 = 27

a8 = 43

a9 = 67

a10 = 104

a11 = 129

a12 = 63 = a4

Последовательность периодична с периодом 8.

Пусть дана последовательность, вычисленная для некоторого n. Предположим, что n делится на s, и что соответствующая числу s последовательность периодична с периодом p.

Для достаточно большого i имеем ai+p = ai по модулю p, следовательно, ai+p ? ai делится на p. Так как, кроме того, и n делится на p, то наибольший общий делитель (НОД) чисел ai+p ? ai и n отличен от 1[9].

Построим последовательность Полларда для n = 22879:

a1 = 2

a2 = 3

a3 = 8

a4 = 63

a5 = 3968

a6 = 4271

a7 = 6877

a8 = 2235

a9 = 7602

a10 = 20928

a11 = 8486

a12 = 11982

НОД чисел a12 ? a4 и n = 22879 есть 137, делитель числа n.

Если мы способны сказать, становится ли данная последовательность периодической (головоломка 1), то мы располагаем быстрым методом определения, имеет ли данное число делитель. Можете играть. Это не такая уж простая программа…

Есть тест на простоту числа, основанный на так называемой малой теореме Ферма: если n — простое, причем число n не является делителем a, то

an?1 = 1 по модулю n.

Представим n в виде n = 2sm + 1. Назовем число n сильно псевдопростым по основанию a, если выполнено одно из следующих двух условий:

либо am = 1 по модулю n,

либо am2r = n ? 1 по модулю n = 2sm + 1 для некоторого r, 0 ? r < s.

Очень мало сильно псевдопростых чисел, не являющихся простыми; так

2047 = 23 * 89 — сильно псевдопросто по основанию 2,

1373653 = 829 * 1657 — по основанию 2 и 3,

25326001 = 2251 * 11251 — по основанию 2, 3 и 5,

3215031751 = 151 * 751 * 28351 — по основанию 2, 3, 5 и 7.

Метод интересен, потому что an вычисляется за время, растущее не быстрее, чем ln n. Это утверждение вытекает из соотношений:

а0 = 1, а1 = а,

a2n = (а * а)n, a2n+1 = (a * a)n * а.

Все, что нужно для работы, у вас есть. Больше делать нечего, кроме собственно составления программы.

Кстати: знаете ли вы две универсальные конструкции в информатике? Первая — «известно, что…». Вторая — «это и нужно сделать…».

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×