Второй цикл изменяет i до тех пор, пока не обнаружится пара элементов, отстоящих на р + 1.
Уточним ситуацию выхода из первого внутреннего цикла. Мы собираемся найти конец равнины, которая лучше всех предыдущих, мы фиксируем ее длину р и ее значение х, a i обозначает первый элемент после этой равнины. Мы можем надеяться найти пару j, j ? р с
a[j] = a [j ? р]
только пока j ? р остается на равнине, которую мы собираемся пройти. Наименьшее соответствующее i значение j удовлетворяет условию j ? р = i, или j = i + р.
Следовательно, можно увеличивать i от р в обоих циклах, не меняя действия программы, что ускоряет ее работу.
Чтобы ускорить и первый внутренний цикл, мы присвоим переменной x ее значение перед циклом и сохраним ее начальное значение в j. Так как i ? р остается постоянным, то можно вычислить значение р также и после выхода из цикла. Начальные значения суть i = j и р = р0, а конечные значения i и р удовлетворяют соотношениям i ? р = j ? р0, откуда р = i + р0 ? j:
i := 1; р := 0
ПОКА i ? n ВЫПОЛНЯТЬ
x := а[i]; j := i
ПОКА i ? n И а [i] = x ВЫПОЛНЯТЬ
i := i + 1
ВЕРНУТЬСЯ
р := i + р ? j; i := i + p
ПОКА i ? n И а [i] ? a[i ? р] ВЫПОЛНЯТЬ
i := i + 1
ВЕРНУТЬСЯ
ВЕРНУТЬСЯ
Вы можете получить эту программу непосредственно, минуя механизм преобразования программ. Но этот способ кажется мне требующим больших умственных усилий,
Может быть, это связано с ходом мыслей, который я приобрел, преподавая[30].
Головоломка 35.
Хорошенько учтите то, что вы знаете: обозначим через и таблицу, которая дает последние элементы наилучших возрастающих последовательностей для (всех возможных) длин от 1 до m.
Покажем сначала, что ui < ui+1. Предположим, что это не так: пусть существует такая последовательность длины i + 1, у которой последний элемент не больше ui. Так как эта последовательность возрастает, то ее предпоследний элемент меньше ui+1 и потому меньше ui. Тогда, удаляя последний элемент этой последовательности, мы получили бы последовательность длины i с последним членом, меньшим ui, что противоречило бы предположению, что ui — последний элемент последовательности длины i с наименьшим возможным последним элементом.
Рассмотрим теперь следующий элемент x нашего вектора. Разместим его в упорядоченной таблице u. Может случиться, что x > um. Тогда элемент x можно присоединить к концу последовательности длины m; тем самым получилась бы (впервые) возрастающая последовательность длины m + 1, которая вследствие своей единственности была бы оптимальна.
Если x меньше u1, то им следует заменить для построения новой наилучшей последовательности с длиной 1. Если же, наконец, оказывается, что ui < x < ui+1, то x можно присоединить к концу последовательности с длиной i + 1, чтобы получить последовательность с длиной i + 1, которая лучше уже известной, и поэтому ui+1 следует заменить на х. Так как и упорядочена, то вы можете разместить в ней x с помощью дихотомического поиска.
Эта операция требует порядка log2 m действий для m, не превосходящих n. Так как вам требуется n обращений к таблице, то вы получаете верхнюю границу числа действий порядка n log2 n, что чрезмерно завышено.
Головоломка 36.
Предположим, что вы уже прошли первую цепочку вплоть до индекса i ? 1 и получили наилучшие слова длины р, меняющейся от 1 до m. Вы рассматриваете символ в положении i и ищете его в другой цепочке. Его первое положение j1 может быть поставлено в конце некоторого слова — скажем, слова длины р1 — и даст слово длины р1 + 1, которое окажется лучшим, чем предыдущее: действительно, если j1 можно поставить после слова длины p1, то это значит, что его значение больше положения последнего символа в наилучшем слове длины р1, но меньше положения последнего символа в слове длины p1 + 1, Рассмотрим теперь второе появление того же символа во второй цепочке: j2 > j1. Его нельзя поставить в конце елова длины p1 + 1, хотя j2 и больше j1, потому что это — другое появление того же символа, и их не нужно смешивать. Поэтому достаточно ограничиться по поводу этого появления символа обращением к таблице в ее части от p1 + 2 до m.
Головоломка 37.
Рассмотрим прямоугольник пробелов, вертикальная граница которого расположена в столбце