+1 = bi? mod s

— последовательности, соответствующие числам n и s соответственно. Тогда легко доказать по индукции, что bi = ai mod s. Одним из периодов последовательности {аi} является n. Значит, n является периодом и для последовательности {bi}. Известно, что любой период последовательности кратен ее минимальному периоду, Так как p, по определению, является минимальным периодом последовательности bi, то n делится на p. — Примеч. ред.

10

Этот язык описан на стр.7–8 выше. Здесь лишь кратко напоминаются формы записи условных операторов и операторов цикла. — Примеч. ред.

11

В оригинале «master-mind». — Примеч. ред.

12

Так начинаются правила проведения автогонок. — Примеч. ред.

13

Напомним, что книга написана в начале 80-х годов. — Примеч. ред.

14

Таким образом, подсчитывается общая сумма карт, взятых партнерами, а не отдельные суммы для каждого партнера. — Примеч. ред.

15

Имеется в виду постановка Блезом Паскалем (1623–1662) вопроса о вере в существование бога как задачи о выборе стратегии в азартной игре («Мысли», отрывок 233): «Взвесим выигрыш и проигрыш, ставя на то, что бог есть. Возьмем два случая: если выиграете, вы выиграете все; если проиграете, то не потеряете ничего. Поэтому, не колеблясь, ставьте на то, что он есть» (Антология мировой философии в четырех томах, Том 2, М., «Мысль», 1970, С. 306). — Примеч. пер.

16

«Ослиным мостом», дальше которого учащегося сдвинуть трудно, считалась в XII–XIII вв. в Парижском университете либо теорема о равенстве углов при основании равнобедренного треугольника, либо геометрическое доказательство теоремы Пифагора. — Примеч. пер.

17

Вот другая и, на мой взгляд, более правильная формулировка этой задачи: циклически сдвинуть элементы n-вектора на m позиций влево. — Примеч. ред.

18

Нужно было бы сказать «не убывает», но получилось бы совершенно не в стиле этой книги. — Примеч. ред.

19

Важно и то, что никаких других позиций, кроме 0, из 1 получить нельзя. — Примеч. ред.

20

Читатель может вернуться к определению чисел Спрага-Грюнди и убедиться, что эти числа определяются на множестве игровых позиций раз и навсегда, исходя из правил игры, и, разумеется, не могут меняться в процессе разыгрывания конкретной партии. Что же является позицией в этой средневековой игре? — Позицией является состав выложенных на стол карт, а также их значения: сколько карт на столе имеет значение 1, сколько карт имеет значение 2, и т. д. Сумма, набранная игроками в данный момент, равна 84 минус сумма значений карт на столе. Что же имеет в виду автор книги, когда он пишет SG (50)? Почему он приписывает число Спрага-Грюнди не позиции, а сумме карт этой позиции? Дело в том, что для всех позиций с набранной суммой 50 число Спрага-Грюнди одинаково и равно 0. Это и позволяет написать равенство SG(50) = 0. А что могло бы значить SG(49)? Если бы все позиции с суммой 49 имели одинаковое число SG, мы бы обозначили его SG(49). Но, увы! Разные позиции с суммой 49 имеют разные числа Спрага-Грюнди. Так что автор книги дальше рассуждает о несуществующих вещах. Я из этих рассуждений ничего полезного извлечь не смог (кроме подозрения, что у автора нет работающей

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату