+1 =
— последовательности, соответствующие числам
10
Этот язык описан на стр.7–8 выше. Здесь лишь кратко напоминаются формы записи условных операторов и операторов цикла. —
11
В оригинале «master-mind». —
12
Так начинаются правила проведения автогонок. —
13
Напомним, что книга написана в начале 80-х годов. —
14
Таким образом, подсчитывается общая сумма карт, взятых партнерами, а не отдельные суммы для каждого партнера. —
15
Имеется в виду постановка Блезом Паскалем (1623–1662) вопроса о вере в существование бога как задачи о выборе стратегии в азартной игре («Мысли», отрывок 233): «Взвесим выигрыш и проигрыш, ставя на то, что бог есть. Возьмем два случая: если выиграете, вы выиграете все; если проиграете, то не потеряете ничего. Поэтому, не колеблясь, ставьте на то, что он есть» (Антология мировой философии в четырех томах, Том 2, М., «Мысль», 1970, С. 306). —
16
«Ослиным мостом», дальше которого учащегося сдвинуть трудно, считалась в XII–XIII вв. в Парижском университете либо теорема о равенстве углов при основании равнобедренного треугольника, либо геометрическое доказательство теоремы Пифагора. —
17
Вот другая и, на мой взгляд, более правильная формулировка этой задачи: циклически сдвинуть элементы
18
Нужно было бы сказать «не убывает», но получилось бы совершенно не в стиле этой книги. —
19
Важно и то, что никаких других позиций, кроме 0, из 1 получить нельзя. —
20
Читатель может вернуться к определению чисел Спрага-Грюнди и убедиться, что эти числа определяются на множестве игровых позиций раз и навсегда, исходя из правил игры, и, разумеется, не могут меняться в процессе разыгрывания конкретной партии. Что же является позицией в этой средневековой игре? — Позицией является состав выложенных на стол карт, а также их значения: сколько карт на столе имеет значение 1, сколько карт имеет значение 2, и т. д. Сумма, набранная игроками в данный момент, равна 84 минус сумма значений карт на столе. Что же имеет в виду автор книги, когда он пишет SG (50)? Почему он приписывает число Спрага-Грюнди не позиции, а сумме карт этой позиции? Дело в том, что для всех позиций с набранной суммой 50 число Спрага-Грюнди одинаково и равно 0. Это и позволяет написать равенство SG(50) = 0. А что могло бы значить SG(49)? Если бы все позиции с суммой 49 имели одинаковое число SG, мы бы обозначили его SG(49). Но, увы! Разные позиции с суммой 49 имеют разные числа Спрага-Грюнди. Так что автор книги дальше рассуждает о несуществующих вещах. Я из этих рассуждений ничего полезного извлечь не смог (кроме подозрения, что у автора нет работающей