обыкновенная картина горной местности. Началось взрывание. Оно оглушительно и нехорошо действует на нервы; но пусть наши герои будут ими крепки и не обратят на этот страшный вой никакого внимания.
Ракета покатилась по рельсам, путешественники почувствовали толчок и горизонт, как им показалось, повернулся на 60°. Он стал для них почти отвесной горой. Пол же ракеты сделался почти горизонтальным. Висячие кресла наклонились и приняли параллельное стенкам направление. Тяжесть увеличилась чуть не вдвое, и люди с ужасом завалились в кресла. Подняться с них они могли только при крайнем напряжении сил, но пока не было в этом надобности. <… >
Не прошло и двух минут, как ракета соскочила с рельсов и неслась свободно и далеко от почвы. Движение ее путники не могли заметить, но им казалось, что громадный опрокинутый горизонт проваливается со всеми своими горами, озерами и городами куда-то вниз и вместе с тем отдаляется от ракеты. <… >
Небо темнело. Стали видны планеты и более крупные звезды, несмотря на полный блеск Солнца. Оно также сияло сильнее. Месяц, едва ранее заметный, стал золотиться и сиять, как будто вымытый. Небо давно было совершенно безоблачно, облака же наклонным пологом покрывали местами такой же наклонный горизонт и мешали кое-где видеть опрокинутую землю и море. <…>
Шум в ушах угомонился, ракета как будто стояла, но они знали, что она мчится теперь вокруг Земли, как ее новая Луна, со скоростью 6–7 верст в секунду. Она вне атмосферы, за 3–4 тысячи верст от поверхности Земли. Остановиться сама собой не может; она — спутник Земли».
Следующую свою ракету 1915 года Константин Циолковский описывает так:
«Труба А и камера В из прочного тугоплавкого металла покрыты внутри еще более тугоплавким материалом, например вольфрамом. С и Д — насосы, накачивающие жидкий кислород и водород в камеру взрывания. Ракета еще имеет вторую, наружную, тугоплавкую оболочку. Между обеими оболочками есть промежуток, в который устремляется испаряющийся жидкий кислород в виде очень холодного газа. Он препятствует чрезмерному нагреванию обеих оболочек от трения при быстром движении ракеты в атмосфере. Жидкий кислород и такой же водород разделены друг от друга непроницаемой оболочкой (на чертеже не изображена). J — труба, отводящая испаренный холодный кислород в промежуток между двумя оболочками; он вытекает наружу через отверстия К — К. У отверстия трубы имеется не показанный на чертеже руль из двух взаимно перпендикулярных плоскостей для управления ракетой. Вырывающиеся разреженные и охлажденные газы благодаря этим рулям изменяют направление своего движения и таким образом поворачивают ракету».
В более поздний период жизни Циолковский в своих исследованиях в области межпланетных сообщений основное внимание уделял двум проблемам — достижению космических скоростей и нахождению оптимального топлива для ракеты. Работая над разрешением первой проблемы, Циолковский уже в 1926 году пришел к выводу, что ракета сможет достигнуть космических скоростей лишь в том случае, если получит сравнительно высокую начальную скорость без затраты своего собственного запаса топлива. Проанализировав возможные способы сообщения ракете предварительной скорости, Циолковский пришел к выводу, что «самый простой и дешевый в этом случае прием — ракетный, реактивный». Исходя из этого, он предложил применить для достижения космических скоростей двухступенчатую ракету, первая ступень которой (по терминологии Циолковского — «земная ракета») должна была двигаться по Земле и в плотных слоях атмосферы.

Циолковским был также произведен расчет запаса топлива, массы конструкции, скорости и других параметров каждой ступени.
Дальнейшее развитие теория многоступенчатых ракет получила в книге Циолковского «Космические ракетные поезда» (1929 годы) и в одной из глав рукописи «Основы построения газовых машин, моторов и летательных приборов», которая при жизни ученого так и не была опубликована.
Циолковский предложил два способа достижения космических скоростей: при помощи ракетного поезда и при помощи эскадрильи ракет. Оба способа имели много общего и заключались в том, что в полет отправлялось несколько ракет, из которых конечной цели достигала только одна. Остальные же ракеты играли роль ускорителей и после израсходования топлива возвращались на Землю.
Однако при первом способе (космический ракетный поезд) ракеты соединялись последовательно, одна за другой, и работала только одна головная ракета. После израсходования топлива головная ракета отделялась от ракетного поезда, после чего начинала работать вторая ракета, ставшая теперь головной, и так далее.
При втором способе (эскадрилья ракет) ракеты соединялись параллельно и работали все одновременно, но использовали топливо не целиком, а лишь наполовину. После этого топливо одной части ракет сливалось в полупустые баки другой части ракет, которые продолжали дальнейший путь с полным запасом горючего. Пустые же ракеты отделялись от эскадрильи и возвращались на Землю. Процесс переливания продолжался до тех пор, пока от эскадрильи не оставалась одна ракета.
Рассмотрим проект ракетного поезда, предложенный Циолковским.
Сразу же оговорив, что проект представлен в самом общем виде, Константин Эдуардович переходит к характеристикам ракеты, составляющей «ракетный поезд». Ее поперечник составляет 3 метра, длина — 30 метров, толщина стенок — 2 миллиметра, общий вес ракеты с полезной нагрузкой — 9 тонн. Запас взрывчатых веществ на всю ракету весит 27 тонн. Объем обитаемого пространства составляет 78 м3. Если экипаж будет состоять из 10 человек, то каждому достанется около 8 м3, или кубическая комната с ребром в 2 метра. Кислорода при удалении продуктов дыхания должно хватить на 16 дней полета.
Так как всем ракетам, составляющим «поезд», предстоит планирование при возвращении на Землю, то каждая ракета имеет следующее устройство.
«Одиночная надутая оболочка, — пишет Циолковский, — имеющая по необходимости форму точеного на токарном станке тела (тела вращения), планировать будет слабо. Надо соединить, например, три таких поверхности. Надутые воздухом или кислородом примерно до двух атмосфер, они представят собою весьма прочную балку. Крылья мы не можем предложить вследствие значительного их веса».
В качестве главного элемента управления используются рули: направления, высоты и противодействия вращению. Они должны действовать не только в воздухе, но и в пустоте. Рули находятся в задней части каждой ракеты. Их две пары. За ними расположены «взрывные» трубы числом не менее четырех. Направление выхлопа в сторону, чтобы не задеть заднюю ракету.
Носовая часть замыкающей ракеты «поезда» занята людьми. Наблюдение за окружающим пространством осуществляется через маленькие кварцевые окна — они нужны для оперативного управления ракетой в момент старта. Большие окна обозрения до момента выхода за пределы атмосферы закрыты ставнями.
За жилым помещением следует машинное отделение (насосы и двигатели для них), наконец, кормовая часть занята взрывными трубами и окружающими их баками с нефтью. Последние окружены баками со свободно испаряющимся жидким кислородом
Вот как описывает Циолковский старт «ракетного поезда»:
«Дело происходит приблизительно так. Поезд, положим, из пяти ракет, скользит по дороге в несколько сот верст длиною, поднимаясь на 4–8 верст от уровня океана. Когда передняя ракета почти сожжет свое горючее, она отцепляется от четырех задних. Эти продолжают двигаться с разбегу (до инерции), передняя же уходит от задних вследствие продолжающегося, хотя и ослабленного взрывания. Управляющий ею направляет ее в сторону и она понемногу спускается на Землю, не мешая движению оставшихся сцепленными четырех ракет.
Когда путь очищен, начинает свое взрывание вторая ракета (теперь передняя). С ней происходит то же, что и с первой: она отцепляется от задних трех и сначала обгоняет их, но потом, не имея достаточной скорости, поневоле возвращается на планету.