передвижения сухопутных войск.
Следовательно, задача резкого улучшения взлетно-посадочных характеристик современных самолетов – уменьшение взлетной и посадочной дистанции современной авиации – имеет принципиальное значение».
Если отнести эти слова к Су-7, то первые самолеты имели взлетную дистанцию около 1300-1400 метров, а новым, более тяжелым, модификациям требовалось еще больше. Не намного меньшей была и посадочная дистанция новых машин. Вместе с тем большие (и немногочисленные) стационарные аэродромы, по расчетам, могли быть выведены из строя уже в течение первых часов войны даже без применения ядерного оружия. Они легко «вычислялись» разведкой и по «традиции», идущей с конца тридцатых годов, первым делом подвергались ударам противника. Обустроить большое число бетонных ВПП для рассредоточения авиации в угрожаемый период также не представлялось возможным ввиду огромных затрат и все той же заметности. Оставалась надежда на грунтовые площадки, менее заметные и уязвимые – заделать воронку от бомбы в грунтовой полосе было куда проще, чем в бетонной. Но грунт для новых машин, в отличие от самолетов минувшей войны, оказался не особенно подходящей «средой». Как справедливо указывалось в вышеупомянутом источнике, большой вес и значительная нагрузка на шасси делала обычные колеса мало пригодными для эксплуатации с грунта, а ведь по требованиям военных необходимо было работать не только с твердого, но и с мокрого и травянистого грунта.
В апреле 1956 г. заведующий лабораторией трения и фрикционных материалов Института машиноведения (ИМАШ) АН СССР, доктор технических наук, профессор И. Крагельский в служебной записке «По вопросу относительно замены качения скольжением при взлете и посадке» обосновал возможность создания реактивного самолета с лыжным шасси и наметил программу исследований и конструкторских разработок. Программа работ формулировалась так: «Создание специальных фрикционных материалов; создание конструкции лыжи (длина, ширина, профиль и др.); разработка специальных мероприятий, связанных с управлением трением лыжами; конструирование лыжного шасси; общая компоновка самолета с лыжным шасси. Указанные работы могут быть выполнены следующими учреждениями: ИМАШ, ЦНИЛАС, ЛИИ, ВИАМ, ЦАГИ, НИАИ».
В начале 1958 года после обсуждений проблемы при участии полковника Н. Фролова (ПВО страны), профессоров И. Крагельского и В. Бабкова (МАДИ), кандидата технических наук А. Смирнова (НИАИ ВВС МО) П.О. Сухим в ОКБ-51 была организована комплексная научно-исследовательская и опытно-конструкторская работа по созданию фронтового самолета повышенной проходимости. В дальнейшем эта работа проходила при поддержке и участии ГКАТ СССР и Президиума АН СССР, академиков А. Благонравова А. Ишлинского и А. Берга, маршала авиации Е. Савицкого, генерал-лейтенанта В. Пышнова, полковника А. Фролова и других. Создание самолета для работы с грунтовых аэродромов стало Государственным заданием, выполнялось по плану Военно-промышленной комиссии при Совете Министров СССР и вошло в план важнейших научно- исследовательских работ Академии наук СССР.
Задачи по улучшению взлетно-посадочных характеристик и повышению «проходимости» Су-7 начали решать в ОКБ-51 с 1958 года. Основными направлениями после рассмотрения различных вариантов стали два – применение лыжного или комбинированного шасси и использование для сокращения взлетно- посадочных дистанций системы сдува пограничного слоя (СПС) с закрылков. Лыжи должны были сделать самолет «вездеходом» (поскольку имели значительно большую, чем колесо, площадь контакта с опорной поверхностью), а система СПС позволяла уменьшить посадочную скорость и дгину пробега самолета, уменьшив тем самым размеры аэродрома, стоимость затрат на его строительство и уменьшить его уязвимость.



Планы мероприятий соответствовали их значимости: в случае успеха авиация по гибкости базирования возвращалась к временам, когда аэродромом могло служить всякое поле, луг или просторная поляна. Задача представлялась проблемной, но вполне выполнимой: в конце концов, полеты на лыжном шасси имели давние традиции, пусть и со снега, но и с ним вполне удовлетворительно эксплуатировались до войны даже тяжелые бомбардировщики. Оснащая лыжами реактивные самолеты, следовало решить две основные группы вопросов, связанные со значительно большим трением при движении по грунту и многократно возросшими нагрузками на неровной и неоднородной почве при увеличившихся в несколько раз взлетно- посадочных скоростях современных машин.
На первом этапе работ были проведены экспериментальные исследования по изысканию приемлемых материалов и износостойких наплавок для лыж, работающих в сложных условиях. На этом этапе исследовался механизм трения и износа материалов при воздействии большого комплекса факторов (абразивная и коррозионная среда, высокие давления, скорости и температуры при фрикционном контакте) на материалы различной природы. Эти исследования проводились как в лабораторных, так и непосредственно в полевых условиях но специально подготовленном самолете-лаборатории Ил-28ЛШ (N0 Ь I 12). На нем были испытаны первые конструкции лыж, сделаны попытки наметить контуры формы самолетной лыжи и оценить величину сопротивления при движении по грунтам различных типов и состояния.
Для проведения дальнейших испытаний лыж в реальных условиях в 1958 году на базе одного из первых Су-7 (2 серия 3 машина) с двигателем АЛ-7Ф был создан самолет С-23, на котором были реализованы рекомендации, выработанные после первого этапа испытаний и исследований. На нем ис- пытывались два варианта шасси – чисто лыжное, с полозьями на всех ногах шасси, и смешанное, при котором носовая стойка оснащалась колесом, а основные – лыжами. Для упрощения конструкции шасси сделали неубираемыми, законтрив их и сняв с основных опор щитки, а для регистрации картины посадки С- 23 оснастили фотокамерой в обтекателе под воздухозаборником двигателя. Лыжи крепились к стойкам вместо колес, о их полоз, носок и пятка делались легко заменяемыми и изготовлялись из 4 мм листа титанового сплава, поскольку их температура при движении достигала 450…500°С, а износ полоза достигал 0,01…0,02 мм на километр пробега по грунту. Для повышения управляемости самолета на грунте конструкция передней стойки была изменена с установкой механизма управления разворотом колеса.
С апреля 1959 года по август 1960 самолет с двумя вариантами шасси проходил испытания на аэродромах страны (главным образом, Кировское в Крыму и Третьякове под Москвой) в розных погодных и климатических условиях, на заснеженных и грунтовых ВПП, в том числе мокрых и даже специально распаханных перед этим. Всего было выполнено более 60 полетов и свыше 100 скоростных пробежек. В ходе испытаний отрабатывались конструкция и размеры корпуса лыжи, форма опорной и носовой частей «подошвы» лыжи, тип и места креплений корпуса лыжи к главной амортизационной стойке и подошвы к корпусу, пяточный амортизатор и другие элементы шасси. Испытания дали богатую пищу для дальнейших работ в этой области и позволили усовершенствовать лыжное шасси, а также показали, что устойчивость и управляемость при движении машины с лыжным шасси на главных опорах и с передним управляемым колесом по грунтовой ВПП практически не отличается от движения самолета на колесном шасси.
Тем временем продолжались работы над самолетом с системой СПС. Пограничный слой является связующим звеном между поверхностью крыла и свободным течением воздуха. Это очень тонкий слой, в котором происходит изменение скорости между неподвижными молекулами воздуха, прилегающими к поверхности крыла, и быстротекущим внешним потоком; таким образом, в этом слое происходит резкое изменение скорости воздуха. Нарастание подъемной силы с некоторого угла атаки при его увеличении происходит замедленно, а затем даже убывает. Основной причиной является срыв потока, зарождающийся в погранслое. Для предотвращения срыва и, тем самым, повышения подъемной силы и служит СПС.
В 1960 году серийный Су-7Б (25 серия 2 машина), получивший обозначение С-25, был доработан под