}
// Использование стандартных алгоритмов со стандартной последовательностью
list<string> lstStrDest;
unique_copy(&arrStr[0], &arrStr[ARRAY_SIZE],
back_inserter(lstStrDest));
}
Итератор — это тип, который используется для ссылки на единственный объект в контейнере. Стандартные контейнеры используют итераторы как основной механизм для доступа к содержащимся в них элементам. Итератор ведет себя как указатель; для доступа к объекту, на который указывает итератор, вы его разыменовываете (с помощью операторов *
или ->
), а для перевода итератора вперед или назад используется синтаксис, аналогичный арифметике указателей. Однако есть несколько причин, по которым итератор — это не то же самое, что указатель. Однако перед тем, как я покажу их, давайте рассмотрим основы использования итераторов.
Итератор объявляется с помощью типа, элементы которого с его помощью будут перебираться. Например, в примере 7.1 используется list<string>
, так что итератор объявляется вот так.
list<string>::iterator p = lstStr.begin();
Если вы не работали со стандартными контейнерами, то часть этого объявления ::iterator
может выглядеть несколько необычно. Это вложенный в шаблон класса list typedef
, предназначенный именно для этой цели — чтобы пользователи контейнера могли создать итератор для данного конкретного экземпляра шаблона. Это стандартное соглашение, которому следуют все стандартные контейнеры. Например, можно объявить итератор для list<int>
или для set<MyClass>
, как здесь.
list<int>::iterator p1;
set<MyClass>::iterator p2;
Возвращаясь обратно к нашему примеру, итератор о инициализируется первым элементом последовательности, который возвращается методом begin
. Чтобы перейти к следующему элементу, используется operator++
. Можно использовать как префиксный инкремент так и постфиксный инкремент (p++
), аналогично указателям на элементы массивов, но префиксный инкремент не создает временного значения, так что он более эффективен и является предпочтительным. Постфиксный инкремент (p++
) должен создавать временную переменную, так как он возвращает значение p
до его инкрементирования. Однако он не может инкрементировать значение после того, как вернет его, так что он вынужден делать копию текущего значения, инкрементировать текущее значение, а затем возвращать временное значение. Создание таких временных переменных с течением времени требует все больших и больших затрат, так что если вам не требуется именно постфиксное поведение, используйте префиксный инкремент.
Как только будет достигнут элемент end
, переход на следующий элемент следует прекратить. Или, строго говоря, когда будет достигнут элемент, следующий за end
. В отношении стандартных контейнеров принято некое мистическое значение, которое представляет элемент, идущий сразу за последним элементом последовательности, и именно оно возвращается методом end
. Этот подход работает в цикле for
, как в этом примере:
for (list<string>::iterator p = lstStr.begin();
p != lstStr.end(); ++p) {
cout << *p << endl;
}
Как только p
станет равен end
, p
больше не может увеличиваться. Если контейнер пуст, то begin == end
равно true
, и тело цикла никогда не выполнится. (Однако для проверки пустоты контейнера следует использовать метод empty
, а не сравнивать begin
и end
или использовать выражение вида size == 0
.)
Это простое объяснение функциональности итераторов, но это не все. Во-первых, как только что было сказано, итератор работает как rvalue
или lvalue
, что означает, что его разыменованное значение можно присваивать другим переменным, а можно присвоить новое значение ему. Для того чтобы заменить все элементы в списке строк, можно написать нечто подобное следующему
for (list<string>::iterator p = lstStr.begin();
p != lstStr.end(); ++p) {
*p = 'mustard';
}
Так как *p
ссылается на объект типа string
, для присвоения элементу контейнера новой строки используется выражение string::operator=(const char*)
. Но что, если lstStr
— это объект типа const
? В этом случае iterator
не работает, так как его разыменовывание дает не-const объект. Здесь требуется использовать const_iterator
, который возвращает только rvalue
. Представьте, что вы решили написать простую функцию для печати содержимого контейнера. Естественно, что передавать контейнер следует как const
-ссылку.
template<typename T>
void printElements(const T& cont) {
for(T::const_iterator p = cont.begin();
p ! = cont.end(); ++p) {
cout << *p << endl;
}
}
В этой ситуации следует использовать именно const
, a const_iterator
позволит компилятору не дать вам изменить *p
.
Время от времени вам также может потребоваться перебирать элементы контейнера в обратном порядке. Это можно сделать с помощью обычного iterator
, но также имеется reverse_iterator
, который предназначен специально для этой задачи. reverse_iterator
ведет себя точно так же, как и обычный iterator
, за исключением того, что его инкремент и декремент работают противоположно обычному iterator
и вместо использования методов begin
и end
контейнера с ним используются методы rbegin
и rend
, которые возвращают reverse_iterator
. reverse_iterator
позволяет просматривать последовательность в обратном порядке. Например, вместо инициализации reverse_iterator
с помощью begin
он инициализируется с помощью rbegin
, который возвращает reverse_iterator
, указывающий на последний элемент последовательности. operator++
перемещает его назад — по направлению к началу последовательности, rend
возвращает reverse_iterator
, который указывает на элемент, находящийся перед первым элементом. Вот как это выглядит.
for (list<string>::reverse_iterator p = lstStr.rbegin();
p != lstStr.rend(); ++p) {
cout << *p << endl;
}
Но может возникнуть ситуация, когда использовать reverse_iterator
невозможно. В этом случае используйте обычный iterator
, как здесь.
for (list<string>::iterator p = --lstStr.end();