функция getFront, так и функция dequeue блокирует один объект mutex, используемый для модификации q, но между их вызовами мьютекс разблокирован, и, если другой поток находится в ожидании выполнения блокировки, он может это сделать до того, как получит свой шанс строка 2.
Проблема состояния состязания в этом конкретном случае решается путем гарантирования сохранения блокировки на весь период выполнения операции. Создайте функцию-член dequeueIfEquals, которая извлекает следующий объект из очереди, если он равен аргументу. Функция dequeueIfEquals может использовать блокировку, как и всякая другая функция.
T dequeueIfEquals(const T& t) {
boost::mutex::scoped_lock lock(mutex_);
if (list_.front() == t)
// ...
Существуют состояния состязания другого типа, но этот пример должен дать общее представление о том, чего следует остерегаться. По мере увеличения количества потоков и совместно используемых ресурсов состояния состязания оказываются более изощренными и обнаруживать их сложнее. Поэтому следует быть особенно осторожным на этапе проектирования, чтобы не допускать их.
В многопоточной обработке самое сложное — гарантировать сериализованный доступ к ресурсам, потому что если это сделано неправильно, отладка становится кошмаром. Поскольку многопоточная программа по своей сути недетерминирована (так как потоки могут выполняться в различной очередности и с различными квантами времени при каждом новом выполнении программы), очень трудно точно обнаружить место и способ ошибочной модификации чего-либо. Здесь еще в большей степени, чем в однопоточном программировании, надежный проект позволяет минимизировать затраты на отладку и переработку.
12.3. Уведомление одного потока другим
Используется шаблон, в котором один поток (или группа потоков) выполняет какие-то действия, и требуется сделать так, чтобы об этом узнал другой поток (или группа потоков). Может использоваться главный поток, который передает работу подчиненным потокам, или может использоваться одна группа потоков для пополнения очереди и другая для удаления данных из очереди и выполнения чего-либо полезного.
Используйте объекты mutex и condition, которые объявлены в condition) для каждой ожидаемой потоками ситуации и при возникновении такой ситуации уведомлять все ее ожидающие потоки. Пример 12.4 показывает, как можно обеспечить передачу уведомлений в модели потоков «главный/подчиненные».
#include <iostream>
#include <boost/thread/thread.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/mutex.hpp>
#include <list>
#include <string>
class Request { /*...*/ };
// Простой класс очереди заданий; в реальной программе вместо этого класса
// используйте std::queue
template<typename T>
class JobQueue {
public:
JobQueue() {}
~JobQueue() {}
void submitJob(const T& x) {
boost::mutex::scoped_lock lock(mutex_);
list_.push_back(x);
workToBeDone_.notify_one();
}
T getJob() {
boost::mutex::scoped_lock lock(mutex_);
workToBeDone_.wait(lock); // Ждать удовлетворения этого условия, затем
// блокировать мьютекс
T tmp = list_.front();
list_.pop_front();
return(tmp);
}
private:
std::list<T> list_;
boost::mutex mutex_;
boost::condition workToBeDone_;
};
JobQueue<Request> myJobQueue;
void boss() {
for (;;) {
// Получить откуда-то запрос
Request req;
myJobQueue.submitJob(req);
}
}
void worker() {
for (;;) {
Request r(myJobQueue.getJob());
// Выполнить какие-то действия с заданием...
}
}
int main() {
boost::thread thr1(boss);
boost::thread thr2(worker);
