- Рассчитывают ли учёные на какую-то новую физику от изучения свойств бозона Хиггса? Совпадают ли свойства бозона Хиггса с теми, что прогнозировались Стандартной моделью?

- Набранных данных пока достаточно только для открытия этой частицы, что это не статистическая флуктуация. Тем не менее можно сказать, что количество обнаруженных частиц и вероятности распада по зарегистрированным каналам близки к предсказаниям самого простого варианта модели хиггсовского бозона, хотя есть некоторые отличия.

Требуется большая точность (больше данных), чтобы делать выводы о том, согласуются ли свойства Хиггса с предсказанными. Любые отклонения будут свидетельствовать о новой физике, будут подсказкой, в каком направлении двигаться дальше.

- Что будет, если все ожидания подтвердились и исследовать здесь больше нечего? Куда будет двигаться физика элементарных частиц? Как будут искать физику за пределами Стандартной модели?

- Вообще-то, хиггсовский бозон — это далеко не конец физики частиц. Это, конечно, хорошо, что нашли недостающее звено Стандартной модели. Однако есть задача ещё более захватывающая. Совсем недавно удалось определить среднюю плотность Вселенной и её состав.

Получилось, что все известные виды материи составляют только около 5 процентов плотности Вселенной. В основном, это барионы (протоны, нейтроны, ядра), а также электроны, фотоны, нейтрино. Около 25 процентов — это «тёмная материя», какие-то неизвестные частицы, которые так же, как и обычная материя, сконцентрированы в галактиках. Это весьма твёрдо установленный факт. Для того чтобы удержать звёзды во вращающихся галактиках (включая наш Млечный Путь), необходима примерно в 5-6 раз большая масса, чем та, что наблюдается в галактиках (звёзды и межзвёздный газ).

Оставшиеся 70 процентов плотности Вселенной составляет «тёмная энергия», некая равномерно распределённая по Вселенной субстанция (возможно, вакуум), вызывающая антигравитацию на больших масштабах и ускоренное расширение Вселенной. Так что и искать новую физику не надо, она есть налицо, а не какие-то малые отклонения от Стандартной модели. Можно считать, что природа просто бросила вызов физикам!

Есть предположения о природе тёмной материи. Сейчас ведутся несколько подземных экспериментов по регистрации частиц тёмной материи. Они пока не обнаружены, но есть надежды. Ещё более привлекательно рождать тёмную материю на ускорителях. Тогда можно будет увидеть не только нейтральные стабильные её частицы, но и другие нестабильные частицы из этого семейства, тогда возможно будет понять природу этих частиц. Были предсказания, что массы этих частиц как раз лежат в области энергий LHC, однако пока ничего не обнаружено, но некоторые шансы найти остаются.

Что дальше, после LHC? Действительно, стоимость LHC составила около 6 млрд. долларов. В будущем планируется увеличить энергию LHC вдвое (путем замены магнитов на более сильные). Дальше возможен будет линейный электрон-позитронный коллайдер на энергии до 3 ТэВ. Рассматривается вариант очень большого протон-протонного коллайдера на энергию до 100 ГэВ. Также разрабатывается мюонный коллайдер на энергии до 100 ТeV. Дальнейший подъём энергии практически невозможен ввиду запредельной стоимости и размеров. Этот путь тупиковый, так как характерный масштаб энергий в физике частиц — это масса Планка (масса, составленная из фундаментальных констант скорости света, постоянной Планка и гравитационной постоянной), составляющая 1019 ГэВ, что на 15 порядков больше энергии Большого адронного коллайдера.

Другой подход, который, возможно, позволит понять, что происходит даже при массах Планка, — это детальное изучение редких процессов при доступных энергиях. Очень обещающей является нейтринная физика. Недавно обнаружено, что массы нейтрино отличны от нуля и лежат в области 10-3- 10-2 эВ. Есть предположения, что их масса связана с явлениями при планковских энергиях. Детальное изучение нейтрино может также пролить свет на вопрос о том, почему Вселенная состоит из материи, а антиматерия куда-то подевалась. Казалось бы, что всё должно быть симметрично.

Правда, если бы было симметрично, то нас бы не было: материя и антиматерия проаннигилировали бы, и остались бы одни фотоны.

- Что теперь изменится, когда мы нашли бозон Хиггса? Например, мы измерим его параметры, и это позволит нам предсказать или рассчитать какое-нибудь новое явление? Или просто убедились в том, что он есть, и всё?

- Стандартной модели требовался хиггсовский бозон, но не было предсказания его массы. В минимальном варианте хиггсовское поле описывается двумя параметрами, и только один был известен из масс W и Z бозонов. Теперь стала известной масса Хигсса, то есть найден второй параметр. Но вряд ли природа устроена так просто! Наверняка это только начало изучения того скалярного поля (а их может быть не одно), которое придает массы элементарным частицам. Вообще, это удивительно, что открыли хиггсовский бозон. Год с небольшим назад уже ожидали сигнала Хиггса, а его всё не было.

Дирекция ЦЕРНа уже отрабатывала с физиками вариант, что говорить налогоплательщикам, если хиггсовского бозона не будет обнаружено (или вообще ничего на LHC не откроют). Хиггсовский механизм — это только один из возможных вариантов, были и другие.

- Обнаружение бозона Хиггса — самый громкий результат. А какие ещё есть интересные события/наблюдения/открытия, сделанные на LHC?

Пока на LHC только один результат высшего класса — это хиггсовский бозон. Есть некоторые интересные предварительные результаты с детектора LHCb, касающиеся CP-несохранения. Надо ещё разбираться, возможно, это выльется в крупное открытие. Имеются интересные результаты в ион-ионных столкновениях. Там изучается кварк-глюонная плазма, из которой когда-то состояла Вселенная.

- На LHC ведь не кончается физика элементарных частиц. Есть ещё, например, коллайдер ILC. Какое Вы предложили для него решение по гамма-гамма-встречным пучкам?

- Да, я уже говорил о линейных коллайдерах. Быть или не быть и на какую энергию, зависит от того, что откроют на LHC. ILС — International Linear Collider — это сверхпроводящий линейный коллайдер на энергию до 500-1000 ГэВ. Ещё есть проект теплого линейного коллайдера CLIC (Compact Linear Collider) с более высоким темпом ускорения. На нём можно будет достичь энергии 3000 ГэВ.

Длина обоих коллайдеров около 50 км. Существенным отличием линейных коллайдеров от циклических (кольцевых) является однократное использование разогнанных пучков электронов и позитронов. Просто их невозможно развернуть из-за излучения при повороте. Эта особенность позволяет превратить линейный коллайдер в гамма-гамма (фотон-фотонный) коллайдер с примерно такими же энергией и светимостью. Эту идею я предложил тридцать лет назад, и сейчас фотонный коллайдер рассматривается как естественное дополнение к линейному коллайдеру. В фотонном коллайдере сначала разгоняются навстречу электроны, а затем на расстоянии порядка 1 мм от места встречи их облучают мощным лазером.

При комптоновском рассеяния отраженный лазерный фотон забирает почти всю энергию у электрона (оптимально 80 процентов). Число таких фотонов примерно равно числу электронов в исходном пучке, и движутся они в том же направлении, в место встречи, куда были сфокусированы электроны. Получаются встречные фотон-фотонные или фотон-электронные столкновения.

В фотон-фотонных столкновениях может рождаться всё то же, что и в электрон-позитронных столкновениях, но по-другому. Например, два фотона переходят в один хиггсовский бозон, притом количество рождённых хиггсовских бозонов будет примерно таким же, как и в e+e-

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату