магнитным моментом единицы объема магнетика. Единицей намагниченности служит ампер на метр (А/м).

39. Свойства магнетиков и магнитные свойства тканей человека

Молекулы парамагнетиков имеют отличные от нуля магнитные моменты. При отсутствии магнитного поля эти моменты расположены хаотически и их намагниченность равна нулю. Степень упорядоченности магнитных моментов зависит от двух противоположных факторов – магнитного поля и молекулярно-хаотиче-ского движения, поэтому намагниченность зависит как от магнитной индукции, так и от температуры.

В неоднородном магнитном поле в вакууме частицы парамагнитного вещества перемещаются в сторону большего значения магнитной индукции, как говорят, втягиваются в поле. К парамагнетикам относят алюминий, кислород, молибден и т. д.

Диамагнетизм присущ всем веществам. В парамагнетиках диамагнетизм перекрывается более сильным парамагнетизмом.

Если магнитный момент молекул равен нулю или настолько мал, что диамагнетизм преобладает над парамагнетизмом, то вещества, состоящие из таких молекул, относят к диамагнетикам. Намагниченность диамагнетиков направлена противоположно магнитной индукции, ее значение растет с возрастанием индукции. Частицы диамагнетика в вакууме в неоднородном магнитном поле будут выталкиваться из поля.

Ферромагнетики, подобно парамагнетикам, создают намагниченность, направленную на индукцию поля; их относительная магнитная проницаемость много больше единицы. Ферромагнитные свойства присущи не отдельным атомами или молекулам, а лишь некоторым веществам, находящимся в кристаллическом состоянии. К ферромагнетикам относят кристаллическое железо, никель, кобальт, многие сплавы этих элементов между собой и с другими неферромагнитными соединениями, а также сплавы и соединения хрома и марганца с неферромагнитными элементами. Намагниченность ферромагнетиков зависит не только от магнитной индукции, но и от их предыдущего состояния, от времени нахождения образца в магнитном поле. Хотя ферромагнетиков и не очень много в природе, в основном именно их используют как магнитные материалы в технике.

Ткани организма в значительной степени диамагнитны, подобно воде. Однако в организме имеются и парамагнитные вещества, молекулы и ионы. Ферромагнитных частиц в организме нет. Биотоки, возникающие в организме, являются источником слабых магнитных полей. В некоторых случаях индукцию таких полей удается измерить. Так, например, на основании регистрации временной зависимости индукции магнитного поля сердца (биотоков сердца) создан диагностический метод – магнитокардиография. Так как магнитная индукция пропорциональна силе тока, а сила тока (биоток) согласно закону Ома пропорциональна напряжению (биопотенциал), то в общем магнито-кардиограмма аналогична электрокардиограмме. Однако магнитокардиография в отличие от электрокардиографии является бесконтактным методом, ибо магнитное поле может регистрироваться и на некотором расстоянии от биологического объекта – источника поля.

40. Электромагнитная индукция. Энергия магнитного поля

Суть электромагнитной индукции – переменное магнитное поле порождает электрическое поле (открыто М. Фарадеем в 1831 г.). Основной закон электромагнитной индукции При всяком изменении магнитного потока в нем возникают электродвижущие силы электромагнитной индукции.

где e – электродвижущие силы;

dt – промежуток времени;

dФ – изменение магнитного потока. Это основной закон электромагнитной индукции, или закон Фарадея.

При изменении магнитного потока, пронизывающего контур (изменении магнитного поля со временем, приближении или удалении магнита, изменении силы тока в соседнем или дальнем контуре и т. п.), в контуре всегда возникает электродвижущая сила электромагнитной индукции, пропорциональная скорости изменения магнитного потока. Изменение магнитного поля вызывает электрическое поле. Так как ток есть производная от заряда по времени, то можно записать:

Отсюда следует, что заряд, протекающий в проводнике вследствие электромагнитной индукции, зависит от изменения магнитного потока, пронизывающе40б го контур, и его сопротивления. Эту зависимость используют для измерения магнитного потока приборами, регистрирующими электрический заряд, индуцируемый в контуре.

Одним из проявлений электромагнитной индукции является возникновение замкнутых индукционных токов (вихревых токов, или токов Фуко) в сплошных проводящих телах, таких как металлические детали, растворы электролитов, биологические органы и т. п. Вихревые токи образуются при перемещении проводящего тела в магнитном поле, при изменении со временем индукции поля, а также при совокупном действии обоих факторов. Интенсивность вихревых токов зависит от электрического сопротивления тела и, следовательно, от удельного сопротивления и размеров, а также от скорости изменения магнитного по-тока. В физиотерапии разогревание отдельных частей тела человека вихревыми токами назначается как лечебная процедура, называемая индуктотермией.

Электромагнитными колебаниями называют периодические взаимосвязанные изменения зарядов, токов, напряженностей электрического и магнитного полей. Распространение электромагнитных колебаний в пространстве происходит в виде электромагнитных волн. Среди различных физических явлений электромагнитные колебания и волны занимают особое место.

Переменный ток – любой ток, изменяющийся со временем. Однако чаще термин «переменный ток» применяют к квазистационарным токам, зависящим от времени по гармоническому закону.

41. Полное сопротивление ((импеданс) тканей организма. Физические основы реографии

Ткани организма проводят не только постоянный, но и пе ременный ток. В организме нет таких систем, которые бы ли бы подобны катушкам индуктивности, поэтому индук тивность его близка к нулю.

Биологические мембраны (и, следовательно, весь ор ганизм) обладают емкостными свойствами, в связи с эт им полное сопротивление тканей организма определя ется только омическим и емкостным сопротивлениями Наличие в биологических системах емкостных элемен тов подтверждается тем, что сила тока опережает п фазе приложенное напряжение. Частотная зависимост импеданса позволяет оценить жизнеспособность тка ней организма, это важно знать для пересадки (транс плантации) тканей и органов. Импеданс тканей и орга нов зависит также и от их физиологического состояния Так, при кровенаполнении сосудов импеданс изменяет ся в зависимости от состояния сердечно-сосудисто деятельности.

Диагностический метод, основанный на регистраци применения импеданса тканей в процессе сердечно деятельности, называют реографией (импеданс-пле тизмографией). С помощью этого метода получают рео граммы головного мозга (реоэнцефалограммы), сердц (реокардиограммы), магистральных сосудов, легких печени и конечностей. Измерения обычно проводят н частоте 30 кГц. Электрический импульс и импульсный ток Электрическим импульсом называется кратковремен ное изменение электрического напряжения или силы тока. В технике импульсы подразделяются на две боль шие группы: видео– и радиоимпульсы.

Видеоимпульсы – это такие электрические импульсы тока или напряжения, которые имеют постоянную составляющую, отличную от нуля. Таким образом, видеоимпульс имеет преимущественно одну полярность. По форме видеоимпульсы бывают прямоугольными, пилообразными, трапецеидальными, экспоненциальными, колоколообразными и др.

Радиоимпульсы – это модулированные электромагнитные колебания.

В физиологии термином «электрический импульс» (или «электрический сигнал») обозначают именно видеоимпульсы. Повторяющиеся импульсы называют импульсным током. Он характеризуется периодом (периодом повторения импульсов) Т – средним временем между началами соседних импульсов и частотой (частотой повторения импульсов):

f=1/T.

Скважностью следования импульсов называется отношение:

Величина, обратная скважности, есть коэффициент заполнения:

42. Понятие о теории Максвелла. Ток смещения

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату