приобретет величину, равную 0,25-0,35 g, чего вполне достаточно для того, чтобы снять вредоносное воздействие невесомости на экипаж.
Однако те, кто видит панацею в раскрутке корабля, обычно забывают о силе Кориолиса, которая проявляет себя именно в раскрученных системах. Проявления эти весьма неприятны: брошенный предмет относит вбок, вытянутая рука сама отклоняется в сторону. Что если адаптация к такой среде окажется еще труднее, чем адаптация к невесомости? Может ли система искусственной гравитации гарантировать, что космонавты в этих условиях будут точно и быстро выполнять все необходимые операции?
На эти непростые вопросы попытались ответить ученые американского космического агентства НАСА. В 2004 году они начали серию экспериментов, чтобы понять, как мозг адаптируется к этой странной среде.
Поль Дизио и Джеймс Лакнер из Лаборатории пространственной ориентации Эштона Грейбиля наблюдают за добровольцами, работающими в специальной вращающейся комнате. Практически сразу было отмечено, что когда перед человеком, манипулирующим различными предметами и нажимающим на всевозможные кнопки, поставлена четкая задача, мозг мобилизуется и начинает компенсировать «неправильную» плывущую обстановку. Чем больше упражнений и усилий делает человек, тем быстрее он приспосабливается к новым условиям жизни. Причем после некоторого времени, проведенного во вращающейся комнате, люди вообще переставали чувствовать силу Кориолиса. Мозг автоматически, незаметно для сознания, вводил поправки в движения тела. И наоборот, после возвращения в нормальный мир некоторое время человеку казалось, что кто-то тянет его руки в сторону — он не мог действовать нормально, словно эффект Кориолиса появлялся для испытуемого вновь, хотя тут-то его и не было. Но стоило только совершить десятка два попыток какого-нибудь целенаправленного движения, как мозг приходил в норму, и «фантом Кориолиса» исчезал без всякого следа.
Дизио и Лакнер установили, что человек хорошо приспосабливается к вращению своего жилища со скоростью до 25 оборотов в минуту, чего должно с избытком хватить для создания вращающихся орбитальных станций и кораблей с искусственной гравитацией. То есть результат обнадеживающий, однако опять же никто не может сказать, как всё это будет выглядеть в условиях реального космоса. А следовательно, раньше или позже придется проводить эксперимент.
Следует также отметить, что до сих пор ни одно живое существо (микроорганизмы не в счет) не побывало за орбитой Луны. Это тоже может оказаться принципиально важным, ведь мы, например, совсем ничего не знаем о том, как повлияет на наши организмы длительное нахождение вне геомагнитного поля.
На Земле все организмы подвергаются воздействию постоянного магнитного поля — мы появились и эволюционировали в нем. Наши жизненные ритмы напрямую связаны с его естественными колебаниями и наложенными на них переменными магнитными полями, обусловленными изменениями в ионосфере и магнитосфере. Величина магнитного поля в межпланетном пространстве и на Марсе будет соответственно в 10-4 и 10-3 раз меньше, чем на Земле. Уже имеются данные о неблагоприятном влиянии пониженного магнитного поля на жизнедеятельность человека: в частности, выявлены неблагоприятные функциональные сдвиги в нервной, сердечно-сосудистой и иммунной системах.
Очевидно, придется спроектировать и испытать некую систему, которая создавала бы на межпланетном корабле магнитное поле, близкое по напряженности полю Земли. Такие работы ведутся. К примеру, международная группа ученых во главе с Рут Бамфорд из британской Лаборатории Резерфорда и Эплтона трудится над проектом «Мини-магнитосферы» («Mini Magnetosphere»), которая могла бы не только имитировать земное магнитное поле, но и подобно ему защищать корабль от вредоносных космических лучей.
Таким образом, на сегодня перед практической космонавтикой стоит целый ряд задач, которые далеки от разрешения. Мы пока не знаем, как будет выглядеть биосфера межпланетного корабля. Мы пока не знаем, какое влияние на экипаж окажет искусственная сила тяжести (если она будет применена). Мы пока не знаем, сколь велико будет воздействие межпланетного пространства на живые организмы.
В данной ситуации куда более логичным выглядит не заниматься многомесячными наземными экспериментами, посадив добровольцев в изолированную бочку, а сосредоточиться на получении ответов на вышеперечисленные вопросы. Для начала — отправив в межпланетный полет несколько аппаратов с биологическими образцами.
К сожалению, у России есть только один такой аппарат. Это «Фобос-Грунт», который должен был стартовать к Марсу в октябре 2009 года, но запуск которого уже перенесен на 2011 год. Вроде бы, с конструкторами аппарата достигнута договоренность провести эксперимент «БиоФобос», разместив на нем 60 герметичных пакетов с бактериями, плесневыми грибами, рачками, рыбками и африканскими комарами- хирономидами. Все эти существа показали хорошую выживаемость в открытом космосе на орбите Земли (эксперименты «Биориск» и «Биориск-МСН») — теперь было бы интересно взглянуть на них по пути на Марс.
А почему, кстати, Марс? Что привлекательного в этой планете?
Выше я уже отмечал, что в докосмическую эру там предполагали обнаружить некое подобие Земли и «братьев по разуму». Однако время шло, методы астрономических наблюдений совершенствовались, а разочарование росло. Уже к началу 1960-х годов стало ясно, что, скорее всего, на красной планете нет никакой цивилизации, но еще теплилась надежда найти там достаточно развитую биосферу. Надежду похоронил американский аппарат «Mariner-9» — 2 января 1972 года он начал картографирование красной планеты с близкого расстояния, и перед глазами исследователей предстал вымороженный, искалеченный ударами метеоритов мир со слабенькой атмосферой, давление которой не позволяет марсианской воде долго оставаться в жидкой фазе. Сегодня мы знаем, что если где-то на Марсе имеется жизнь, то она примитивна и прячется глубоко под слоями грунта. Поиск ее оправдан только с позиций расширения научного знания, но расширять это знание способны и дистанционно управляемые роботы.
Существует и еще один важный момент — техническое обеспечение. Лететь сегодня на Марс, не отработав технологию посадки на другую планету, — это самоубийственное безумие. Полигоном в данном случае может служить Луна, однако чтобы добраться до Луны, необходимы соответствующие средства или программа их создания. Например, у США такая программа есть — до конца следующего десятилетия американцы собираются запустить в серийное производство новый корабль «Orion», а к нему две ракеты- носителя: тяжелую «Ares I» и сверхтяжелую «Ares V». С нашей стороны похожие инициативы пока сводятся к разговорам о необходимости поменять корабли «Союз» на нечто более совершенное и построить новый космодром на Дальнем Востоке. Вероятнее всего, руководство отечественной ракетно-космической отрасли рассчитывает на широкую международную кооперацию в проекте марсианской экспедиции: дескать, американцы дадут технику, а мы поделимся итогами многолетних экспериментов. Но в таком случае отечественные руководители, очевидно, не понимают, что между ракетой нового поколения и бочкой на Земле есть существенная разница: американцы вполне могут воспроизвести программу «Марс-500» после того, как решат более важные задачи, а мы сегодня снова ставим телегу впереди лошади и, тратя нищенские подачки из бюджета на заведомо вторичный проект, отнимаем у своей страны и без того весьма призрачный шанс сохранить ракетно-космический потенциал.
О перспективах же полета российского экипажа на Марс лучше всех сказал космонавт Валерий Поляков (тот самый, который установил мировой рекорд по непрерывному пребыванию в космосе). Выступая перед коллегами, собравшимися на международном симпозиуме «Humans in Space» в Москве, он заявил: «Вы знаете, вместе с вами я ощущаю себя в роли 'обманутых вкладчиков'. Кризис в мозгах руководства наступил раньше, чем мировой экономический. Все мы надеялись при жизни провожать экипаж к Марсу и получить интересные научные результаты. Но я открываю Федеральную космическую программу и вижу, что мы не сможем полететь к Марсу даже в 2030 году».
12 апреля — День космонавтики // Здоровье. — 1985. - № 4.