значились в планах Природы, так что при их производстве природные катализаторы – ферменты нам не помощники. Высокая избирательность ферментов, их главное достоинство, сработала против них.

Кроме того, с нашей человеческой точки зрения ферменты нетехнологичны. Они слишком нежные создания и привыкли работать в тепличных условиях, при температуре живого организма. Стоит чуть поднять температуру (а это стандартный способ увеличения скорости процесса), как их активность падает, а то они и вовсе денатурируют. Да и работать они могут только в водных растворах, а воду технологи терпеть не могут – как растворитель она слишком активна и требует огромных затрат энергии на испарение – то ли дело органические растворители! И наконец, ферменты, по сути дела, катализаторы одноразового использования, их чрезвычайно трудно отделить от продуктов реакции без потери активности. Слишком дорогое получается удовольствие.

Специалистам все эти недостатки были понятны с самого начала, просто они в своих полных оптимизма реляциях не акцентировали на них внимание. Но при этом значительную часть усилий направляли на преодоление этих недостатков. Именно энзимологи стали первыми химически “прививать” гомогенные катализаторы к поверхности твердого носителя. Так была решена проблема отделения от продуктов реакции (здесь энзимологи шли по пути, проторенному Меррифилдом) и многократного использования катализатора. В терминах сегодняшнего времени эти работы были примером конструирования нанообъектов. К поверхности неорганического материала – носителя – прививали органическую “ножку” длиной в несколько нанометров, а к ней в свою очередь молекулу фермента диаметром в десятки нанометров.

Ученые стали также загонять ферменты в так называемые обращенные мицеллы. Это такие ассоциаты обычных поверхностно-активных веществ, растворенных в органических растворителях. В отличие от прямых мицелл, о которых я уже упоминал, в обращенных мицеллах полярные головки молекул ПАВ обращены внутрь, а углеводородные хвосты торчат наружу, как иглы ежа. И если прямые мицеллы способны поглощать органические вещества, то обращенные – воду, превращаясь, грубо говоря, в капельку воды диаметром в единицы и десятки нанометров, покрытую мономолекулярным слоем ПАВ. Если мы поместим в ядро обращенной мицеллы молекулу фермента, то он, находясь в привычной для него среде обитания, будет вести свойственные ему химические реакции, но формально процесс будет протекать в органическом растворителе, который служит резервуаром вещества, подвергаемого ферментативному превращению, и местом сбора продуктов реакции. В сущности, энзимологи придумали и впервые практически осуществили идею нанореактора , ключевую для современных нанотехнологий.

Еще одна амбициозная цель: создание новых ферментов, природных катализаторов, которых нет в природе. Сделать это стало возможным в результате глубокого проникновения в устройство ферментов и в механизм их формирования. Зная это, можно растянуть или сжать глобулу фермента, изменяя таким образом размер “замочной скважины” и настраивая фермент на новый субстрат. Можно дополнительно сшить полипептидную цепь фермента и застабилизировать его третичную структуру, препятствуя денатурации. Можно ввести в фермент новые аминокислотные фрагменты, повышающие, например, его термостабильность или способствующие фиксации на твердом носителе. Можно, наконец, внести изменения в состав активного центра фермента и тем самым создать катализатор принципиально новой реакции. Возможности такого тонкого конструирования на наноуровне практически безграничны, и это то, что с полным правом может называться нанотехнологиями.

Эти работы пока мало известны широкой общественности, но мне кажется, в ближайшие годы нас ждет вторая волна бума ферментативного катализа. Дело в том, что мы постепенно и неотвратимо возвращаемся к природе. Взлет цен на углеводородное сырье и экологические соображения заставляют уделять все большее внимание возобновляемым источникам сырья. А это в свою очередь повлечет за собой изменение всей идеологии химической промышленности. Так называемое биотопливо можно залить в бак автомобиля, и он после этого поедет. В химической промышленности это не проходит. В реактор, рассчитанный на углеводородное сырье, нельзя засыпать глюкозу, получаемую при гидролизе целлюлозы. То есть засыпать, конечно, можно, но ничего путного не получится. Необходимо разрабатывать новые технологии, причем принципиально новые, потому что все наше научное и технологическое мышление было заточено под углеводородное сырье, а что делать с кислородсодержащими природными соединениями, мы, честно говоря, понятия не имеем [14] .

И вот здесь следует ожидать выхода на передний край ферментов, которые умеют управляться с природными веществами гораздо лучше химиков. Так что ферментативный катализ (=нанотехнологии) – это наше будущее с большой вероятностью. Поживем – увидим.

Глава 6 Жизнь одного химика

В предыдущей главе мы упомянули о катализе как об одном из важнейших химических явлений, но затем, увлекшись ферментами – образцовыми наноразмерными объектами, ушли далеко в сторону, сканируя поле биохимии. Теперь вернем иглу нашего исторического микроскопа назад и рассмотрим катализ в его наиболее распространенном, “классическом” варианте.

До систематических исследований катализа как явления наука доросла лишь через много десятилетий после его открытия – в конце XIX – начале XX века. Важность получаемых результатов была оценена быстро – одна из первых Нобелевских премий по химии была присуждена в 1909 году уже встречавшемуся нам на страницах книги Вильгельму Оствальду “за изучение природы катализа и основополагающие исследования скоростей химических реакций”. В 1912 году Нобелевскую премию получил французский химик Поль Сабатье (1854–1941) “за предложенный им метод гидрогенизации органических соединений в присутствии мелкодисперсных металлов, который резко стимулировал развитие органической химии”. Промышленная реализация каталитических процессов также не заставила себя долго ждать. Фриц Габер (1868–1934) и Карл Бош (1874–1940) разработали процесс каталитического синтеза аммиака из водорода и атмосферного азота при высоком давлении. За этой скучной формулировкой скрывается один из важнейших прорывов в истории человеческой цивилизации. Дело в том, что азот – необходимый элемент для построения клеток всех живых организмов, но ни растения, ни тем более мы, высшие животные, не способны усваивать азот напрямую из воздуха, так что все мы были заложниками жизнедеятельности и производительности специальных почвенных бактерий, ответственных в природе за этот процесс. Процесс Габера открыл путь к крупномасштабному производству азотных удобрений и резкому росту урожайности сельскохозяйственных культур. За это Фрицу Габеру присудили Нобелевскую премию по химии в 1918 году. Карл Бош также получил свою Нобелевскую премию в 1931 году “за заслуги по введению и развитию методов высокого давления в химии”.

Это были титаны с интересными, подчас драматическими судьбами. Но в этой главе речь пойдет не о них, а об их современнике, не просто титане, а – гении. Вот как аттестовал его на торжественном заседании Американского химического общества, посвященного семидесятипятилетию ученого, нобелевский лауреат Рихард Вильштеттер {10} : “Никогда за всю историю химии в ней не появлялся более великий человек, чем Ипатьев”. Ему вторил известный американский химик Фрэнк Уитмор: “Среди многих замечательных химиков Россия дала миру трех выдающихся. Это Ломоносов, Менделеев и Ипатьев. Ипатьев оказал гораздо большее влияние на мировую химию, чем оба его знаменитых соотечественника. Он был химиком- первооткрывателем и продолжает таким оставаться до сих пор”. Ипатьева называют отцом современной нефтепереработки и нефтехимии. К моему великому стыду, в студенческие годы, уже работая на кафедре химии и органического катализа, я слыхом не слыхивал о Владимире Николаевиче Ипатьеве. И то, что он был вычеркнут из официальной отечественной истории, не может служить мне оправданием. Историю своей страны надо знать, во всем ее величии и неприглядности.

“Жизнь одного химика” – автобиографическая книга Ипатьева, изданная в двух томах в Нью-Йорке в 1945 году на русском языке. Не оставляю надежды, что когда-нибудь ее все же издадут в полном объеме в России и люди будут читать ее как роман, ведь долгая жизнь, прожитая Ипатьевым, была удивительной сама по себе, даже безотносительно сделанных им научных открытий.

Владимир Ипатьев родился в 1867 году в дворянской семье. Отец – Николай Алексеевич, уже немолодой, известный московский архитектор. Мать – Анна Дмитриевна, в девичестве Глики, гречанка. Через два года родился брат Николай, который, сам того не желая, оказался косвенно причастен к одному из самых позорных деяний нашей истории. А еще через три года дети лишились матери. Во многих биографиях написано, что Анна Дмитриевна умерла, возможно, так говорили и мальчикам, но на самом деле она ушла к Александру Чугаеву, скромному учителю физики, в которого была влюблена с юности. В этом союзе родился сын Лев, также ставший известным ученым [15] . Тут поневоле задумаешься о существовании генов научной гениальности, которые передаются по женской линии.

О том, что у него есть младший брат, Владимир Ипатьев узнал лишь в сорокалетнем возрасте, а общественность – еще десятью годами поз же в результате курьезного случая. Дело в том, что

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату