связывается с цепью ДНК, как деталь конструктора “Лего”, а затем ДНК-полимераза начинает пристраивать к нему олигонуклеотидную последовательность.

Скорость копирования ДНК в клетках нашего организма составляет около 50 нуклеотидов в секунду. Нетрудно подсчитать, что для копирования одной цепи молекулы ДНК длиной, например, в 50 миллионов нуклеотидов ДНК-полимеразе потребуется около 12 суток, а на копирование всего нашего генома, состоящего из 3 миллиардов пар нуклеотидов – около 4 лет. Понятно, что это слишком долго, поэтому над копированием одной молекулы ДНК трудятся одновременно сотни и тысячи молекулярных машин, каждая на своем участке длиной от 30 до 300 тысяч нуклеотидов, они же обеспечивают состыковку синтезированных кусков цепи. Другие молекулярные машины собирают в это время копию второй цепочки молекулы ДНК и так одновременно во всех наших 46 хромосомах. Так продолжительность копирования генома снижается до минут.

ДНК выполняет также функцию базы данных о структуре всех белков нашего организма. Если клетка испытывает потребность в том или ином белке, она обращается за инструкцией по синтезу к ДНК и та выдает необходимую информацию в виде молекулы РНК. Этот процесс называется транскрипцией ДНК, его осуществляет специальная молекулярная машина – РНК-полимераза. Ее функции намного более разнообразны, чем у ДНК-полимеразы. Она прикрепляется к молекуле ДНК в определенном месте, указанном специальной сигнальной молекулой, расплетает спираль ДНК и начинает копировать ее кодирующую цепь, собирая на ней как на матрице цепочку РНК из отдельных нуклеотидов, переводя при этом код ДНК в код РНК. Для этого РНК-полимеразе не нужны никакие праймеры, а место, где необходимо остановиться, задается определенной последовательностью нуклеотидов в цепи ДНК. Так что молекулярная машина движется от исходной точки к конечной, расплетая спираль ДНК перед собой, восстанавливая ее за собой и одновременно выдавая все удлиняющуюся нить РНК. Длина расплетенного участка ДНК, где происходят все основные события, составляет примерно 18 нуклеотидных фрагментов. Скорость работы РНК-полимеразы несколько ниже, чем ДНК-полимеразы, и не превышает 20–30 нуклеотидов в секунду.

Впрочем, исследования в этой области проходили куда медленнее. Крик, как мы помним, сформулировал свою “центральную догму” молекулярной биологии в 1958 году. В 1961 году французские микробиологи Франсуа Жакоб и Жак Моно {16} высказали предположение о существовании специального фермента, ответственного за осуществление транскрипции, РНК-полимеразу выделили в 1965 году, тонкий молекулярный механизм ее действия выявили в 70–80-е годы, Нобелевскую премию по химии получил за это в 2006 году Роджер Корнберг (род. 1947 г.), сын Артура Корнберга. Поразительный пример преемственности в науке. Не менее удивительно и то, что два похожих природных объекта – ДНК– и РНК- полимеразы разнесены в листе Нобелевских премий на полвека. Но так развивается наука – неравномерно и отнюдь не последовательно.

Самая же совершенная из отрытых учеными природных молекулярных машин, на мой взгляд, это рибосома – завод по производству белка. В каждой клетке живого организма их насчитывается несколько десятков тысяч. Рибосомы универсальны в том смысле, что каждая из них может синтезировать любой белок, необходимый живому организму. Информация о том, какой белок следует синтезировать, поступает из “мозгового” центра клетки – ее ядра в виде линейной молекулы информационной РНК, продукта копирования кодирующей цепочки ДНК с помощью РНК-полимеразы. Рибосома захватывает один конец молекулы информационной РНК и шаг за шагом протягивает ее через себя. На каждом шаге рибосома считывает информацию с фрагмента участка РНК, как с компакт-диска, и в соответствии с этой информацией пристраивает к растущей цепи белка очередную аминокислоту, которая поступает из окружающей среды – цитоплазмы клетки. Скорость сборки или, как ее называют, трансляции составляет десятки аминокислотных фрагментов в секунду.

По окончании синтеза полипептидная цепь высвобождается из рибосомы и специальные белки сворачивают ее требуемым образом и осуществляют над ней другие операции, превращающие ее, собственно, в белок или фермент. Общее количество молекул белков и РНК, принимающих участие в синтезе одной молекулы белка составляет около трехсот. Можно только восхититься отлаженностью и согласованностью всего этого природного технологического процесса.

Каков же размер рибосомы? В это трудно поверить, но он составляет всего двадцать нанометров. При этом помимо считывания информации и конструирования сложного объекта из элементарных строительных блоков рибосома осуществляет притягивание молекулы РНК, то есть механическую работу. Молекулярные машины обходятся при этом без привычных нам колес и шестеренок, учиться нам еще у Природы и учиться.

Дело это не быстрое. Вот и рибосомы были открыты в середине 1950-х годов американским биологом румынского происхождения Георгом Паладе (1912–2008), механизм их функционирования более и менее прояснился через пятнадцать лет, за что Паладе вместе с бельгийцами Альбером Клодом (1899–1983) и Кристианом де Дювом (1917–1978) получили Нобелевскую премию по физиологии и медицине. Но к расшифровке структуры рибосомы на атомарном уровне ученые подобрались только в нашем веке, когда появилась соответствующая экспериментальная техника высокого разрешения. При этом был выявлен ряд новых важных деталей устройства и функционирования рибосом, за что в 2009 году британец Венкатраман Рамакришнан, американец Томас Стейц и израильтянка Ада Йонат получили еще одну Нобелевскую премию, на сей раз по химии.

Все это, конечно, очень интересно и расширяет знания ученых о природе, скажете вы. Но при чем тут нанотехнологии? Действительно, для многих ученых познание природы – самоцель, но в этом нет ничего плохого, потому что без фундаментальной науки прогресс человечества просто невозможен. При этом всегда были и есть ученые, наделенные практическим складом ума, которые во всяком открытом ими или коллегами новом явлении видят в первую очередь источник технических усовершенствований и изобретений. Они не ждут, пока будут выявлены всякие тонкие детали того или иного явления, подчас они даже не ждут безоговорочных подтверждений того, что оно на самом деле существует, они сразу же начинают размышлять над тем, как бы его приспособить к делу. Эти прикладные исследования зачастую опережают фундаментальные, создаются технологии, производятся новые материалы и устройства, а ученые все еще продолжают ломать голову над тем, почему эти устройства работают так, как они работают.

Вот и молекулярные машины для “обработки” ДНК ученые быстро стали использовать сначала для собственных, а потом и общечеловеческих нужд. Рестриктазы, разрезающие молекулу ДНК в строго определенных местах, весьма помогли известному уже нам Фредерику Сенгеру определить последовательность соединения нуклеотидов в цепи. Затем ученые научились вырезать из молекулы ДНК участок, соответствующий определенному гену. И почти сразу возникла мысль о том, а нельзя ли соединить между собой гены, принадлежащие разным живым организмам, и получить таким образом ДНК, не существующую в природе?

Как это можно сделать? Вспомним о “липких” концах, образующихся при разрезании ДНК. Мы вырезаем с помощью рестриктазы какой-нибудь ген из одной молекулы ДНК и выделяем его. Затем, используя ту же самую рестриктазу, вырезаем еще один ген из другой ДНК. Рестриктаза одна и та же, соответственно и липкие концы у этих двух фрагментов одинаковые, нам остается лишь смешать их, и они слипнутся между собой. А затем мы добавим фермент лигазу, которая намертво спаяет нити новой ДНК. Такой вот генный конструктор. В реальности все выглядит намного сложнее, есть множество подводных камней, о некоторых вы, возможно, и сами уже догадались. Например, с какой стати будут слипаться разнородные фрагменты, если с не меньшим успехом могут слипнуться и однородные? Могут, конечно, но это уже техническая проблема разделения различных молекул ДНК, ее ученые умеют решать.

Впервые идею генной инженерии воплотил в жизнь в самом начале 1970-х годов американский биохимик Пол Берг (род. 1926 г.). Он соединил в одно целое фрагменты ДНК вируса (бактериофага) SV40 и бактерии Escherichia coli . Это принесло ему в 1980 году Нобелевскую премию по химии, которую он разделил с Фредериком Сенгером. Берг проторил путь к генетически модифицированным организмам. Что интересно, он сам свернул работы в этой области, прислушавшись к мнению многих своих коллег и широкой общественности, что эти “игры в бога” могут привести к непредсказуемым результатам. Сначала жесткое государственное регулирование в этой области, а уж потом научные исследования, полагал Берг. Осторожность и трезвая оценка рисков, конечно, необходимы, вот только нельзя отдавать это на откуп чиновникам, которые мало того что ничего не понимают в науке, так еще вынуждены угождать наиболее громкоголосой части электората, на подсознательном уровне страшащегося всего нового и неизвестного.

Впрочем, такой осторожный подход разделяли далеко не все ученые. Джинн был выпущен из бутылки, более того, идея лежала на поверхности, ее могли реализовать и другие исследователи. В историю вошел Герберт Бойер.

Он был на десять лет моложе Берга и принадлежал, в сущности, к другому поколению ученых. Открытие ДНК случилось, когда он заканчивал

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату