ослабляются вплоть до исчезновения. Так появляется цвет”.
Попробовали бы они сказать нечто подобное в середине XVIII века! За одну первую фразу их бы выгнали с волчьим билетом не то что из школы, но из любого университета. В науке тогда царила корпускулярная теория света Ньютона, согласно которой свет представляет собой поток материальных частиц, а волновая теория, созданная Гюйгенсом в конце XVII века, пребывала в загоне. Из крупных ученых того времени ее поддерживали разве что Леонард Эйлер и Бенджамин Франклин. Это тем более удивительно, что теория электричества Франклина может быть с полным основанием названа корпускулярной, а вот в оптике он придерживался диаметрально противоположной концепции. Тут можно говорить о его гениальной научной интуиции, но, возможно, сыграло свою роль и наблюдение за пленками масла на воде, ведь именно объяснение явления интерференции не давалось теории Ньютона, но с ним прекрасно справлялась волновая теория.
Так в научном наследии Бенджамина Франклина впервые сошлись поверхность и тонкие слои, электричество и оптические явления – краеугольные камни нанотехнологий. И потому его номер – первый.Вернемся к толщине слоя масла. Мы с вами прикинули, что она может составлять десять нанометров. Это много или мало? И можно ли утончить пленку, а если да, то до какого предела? Вы, конечно, знаете ответ на последний вопрос: сплошная пленка никак не может иметь толщину меньше, чем размер молекулы масла. И обратно: зная толщину предельно тонкого слоя масла [2] , можно определить размер молекулы. Неужели Франклин не сделал этот тривиальный эксперимент и не произвел элементарный расчет? Нет, не сделал. Нельзя требовать от одного, пусть и гениального, человека всего, тем более невозможного. Волновая теория во времена Франклина хотя бы была, а вот атомно- молекулярного учения не было. Было слово “молекула”, его ввел в 1636 году французский священник Пьер Гассенди, но оно не имело конкретного физического содержания. Поэтому со временник Франклина Михаил Васильевич Ломоносов (1711–1765) рассуждал, как мы помним со школы, не о молекулах, а о корпускулах, но эти идеи не оказали никакого влияния ни на Франклина, ни на других ученых. И даже отец современной атомистики Джон Дальтон (1766–1844) обходился без этого понятия и говорил о “сложных атомах”.
Так что определить размер молекулы из толщины слоя масла Франклин не мог в принципе. И лишь через сто лет после его кончины, повторив его эксперименты, это сделал Джон Уильям Стретт, лорд Рэлей (1842–1919). Он получил величину около двух нанометров – таков размер довольно крупных молекул масла.
Казалось бы, после этого нанообъекты должны были получить постоянную прописку в мире науки. Не тут-то было! Это в школьном учебнике все просто: атомно-молекулярное учение, основы которого заложили М.В. Ломоносов и Антуан Лавуазье (1743–1794), утвердилось благодаря работам Джона Дальтона (1766–1844) и Амадео Авогадро (1776–1856), окончательную точку поставил в 1860 году Международный конгресс в Карлсруэ, который был посвящен в основном вопросам терминологии, потому что существо дела ни у кого уже не вызывало сомнений. На самом деле вызывало, и у очень многих, считавших атомы и молекулы всего лишь гипотезой, пусть довольно хорошо обоснованной и внешне убедительной, по той простой причине, что никто никогда их не видел.
Помимо сомневающихся были и ярые противники. Например, Марселен Бертло (1827–1907), выдающийся ученый, выполнивший пионерские работы во многих областях химии, профессор Коллеж де Франс, непременный секретарь Французской академии наук и член-корреспондент Петербургской, министр народного просвещения и изящных искусств, а впоследствии министр иностранных дел Франции и прочая и прочая, считал само представление о молекуле бредовой идеей и называл ее не иначе как “мистической концепцией”. Смирился он с ней лишь в конце жизни. Как и другой, возможно, еще более великий ученый – Вильгельм Оствальд (1853–1932), один из первых лауреатов Нобелевской премии по химии (1909) “в признание работ по катализу, а также за исследования основных принципов управления химическим равновесием и скоростями реакций”.
Оствальд – чрезвычайно примечательная личность. Широтой интересов и продуктивностью в самых разных областях человеческой деятельности он напоминал Франклина. Помимо собственно химии, он оставил заметный след в живописи, теории музыки, лингвистике, участвовал в самых разных общественных движениях, от пацифистских до шовинистических, написал 77 книг и воспитал целую плеяду известных ученых.
А еще он был философом, последним великим натурфилософом, создателем “энергетической” теории, согласно которой энергия – единственная реальность в этом мире, а материя есть лишь форма проявления энергии, “то, что мы называем материей, является лишь совокупностью энергий, собранной воедино в данном месте”. В этой теории не было места атомам и молекулам.
В фундаментальном учебнике Оствальда “Основы неорганической химии” слово атом не упоминается ни разу. Вы можете себе такое представить? Вот и я не могу. Высший пилотаж! Причем это не был “альтернативный” учебник, которыми так богато наше время, а канонический труд, выдержавший множество переизданий, на нем выросло целое поколение химиков.
“Мы должны совершенно отказаться от надежды наглядно представить себе физический мир посредством сведения всевозможных явлений к механике атомов”, – писал Оствальд. Лозунг Оствальда “Не сотвори себе кумира в виде образа!” был практически реализован создателями квантовой механики, которые отказались от какой-либо наглядности в физике и свели все к абстрактным математическим построениям. Они, конечно, не отрицали существования атомов, но споры о том, можно ли
Вот об этих открытиях я и расскажу в последующих главах. И, прочитав эту книгу, читатель поймет, почему ее автор утверждает: история нанотехнологий началась гораздо раньше, чем полагают многие.
Глава 2 О величии и юбилейных рейтингах
Принято считать, что в XVIII веке в России был только один великий ученый – Михаил Васильевич Ломоносов. Но мало кто помнит (или знает), что в том же столетии в нашей стране жил и работал ученый, имеющий не меньше, а может, и больше оснований считаться великим, и звали его Тобиас Ловиц. И его открытия прямо связаны с нанотехнологиями.
Тобиас Ловиц родился в Германии, в Гёттингене, в 1757 году. В Россию он попал в десятилетнем возрасте, когда его отца, астронома Георга Ловица, пригласили работать в Петербургскую академию наук. Вскоре они отправились в экспедицию в прикаспийские степи и в самом ее конце, уже при возвращении, случилось трагическое происшествие, первое в череде несчастий, с удивительным постоянством преследовавших Тобиаса всю его жизнь. Вот как описал это происшествие А.С. Пушкин в “Истории Пугачёва”: “Пугачёв бежал по берегу Волги. Тут он встретил астронома Ловица и спросил, что за человек. Услышав, что Ловиц наблюдал течение светил небесных, он велел его повесить поближе к звездам”.
Каким образом удалось выжить в этой передряге семнадцатилетнему Тобиасу, история умалчивает, но пережитое нервное потрясение сказывалось многие годы, подрывая и без того некрепкое здоровье. Юношу определили на казенный кошт в петербургскую Академическую гимназию, а вскоре он стал подрабатывать учеником аптекаря в Главной аптеке. Эмигрантский хлеб горек, и в какой-то момент Ловиц решил вернуться на родину, где он два года изучал медицину в Гёттингенском университете. Затем он во второй раз, уже по собственной воле, отправился в Россию, страну богатейших возможностей, в которую в ту пору ехали многие, особенно немцы, а уезжали из России единицы.
Ловиц так и не закончил курса ни гимназии, ни университета, в сущности, он был гениальным ученым-самоучкой, на практике овладевавшим всеми премудростями науки. Работать он устроился все в ту же Главную петербургскую аптеку, где увлекся химией. В ту пору аптеки наряду с университетами были средоточием научной жизни, а лаборатория, в которой выпало работать Ловицу, оснащением превосходила химическую лабораторию Академии наук, которая после смерти ее основателя, М.В. Ломоносова, постепенно приходила в упадок.
Второе пришествие сложилось лучше первого. Ловиц в совершенстве овладел русским языком, звался на русский манер Товием Егоровичем, имел хорошую работу. Вот только семейная жизнь не задалась – четверо детей умерли во младенчестве, а затем сошла в могилу и жена. “Он не знал других радостей кроме тех, что доставляли ему его химические открытия” – так напишут через много лет в его некрологе.
А открытия не заставили долго ждать. Первое, и для целей нашей книги самое важное, случилось всего лишь через год после начала работы, в 1785 году. Дело было так. Ловиц занимался приготовлением чистой винной кислоты перекристаллизацией ее из раствора. Эксперименты раз за разом не удавались – кристаллы были неизменно окрашены в грязный, бурый цвет. Но вот однажды колба разбилась и содержимое вылилось в песчаную баню, в которой помимо песка было много угольной пыли, – для нагревания в тогдашних