простыми причинами, как снижение частоты путешествий или желание завести семью). Как бы то ни было, но согласно нашему алгоритму будет правильным предположить, что авиакомпания начнет получать меньше доходов от клиенток с таким профилем.
Эта история помогла мне сбросить покров таинственности с процесса статистического моделирования поведения людей. Я понял, что если мне удастся создать детальный список, описывающий клиентов, – не только их имен, но и другой информации (возраст, пол, профессия, уровень дохода, сумма их затрат), – то я смогу сделать вполне обоснованные предположения, сколько продуктов у компании они купят в сравнении с лучшими ее клиентами.
Чтобы лучше представлять ситуацию с будущими продажами, вам имеет смысл пригласить на работу статистика и поручить ему разработку моделей, сходных с той, которую я сделал для авиакомпании. Но в будущем – в течение трех или четырех лет – я ожидаю появления таких программ, которые позволят вам делать все это самостоятельно. Не исключено, что Google даже выпустит бесплатную версию.
Полная детальная модель
В предыдущем сюжете, рассматривая пример авиакомпании, мы опирались лишь на один из трех компонентов, составляющих пожизненную ценность, – изменение дохода в будущем (увеличение или снижение). Порой, когда вытаскиваешь какие-то ключевые данные из имеющейся клиентской базы, требуется создание модели, включающей в себя еще две переменные – ценность индивидуального клиента и продолжительность связи с компанией. Я расскажу, как это делается, на примере нашей работы с крупной розничной сетью. Предположим, эта сеть (назовем ее Retailco) наняла нас для оценки качества своей клиентской базы. Мы начали с классификации каждого домохозяйства по показателю пожизненной ценности, чтобы дать Retailco возможность индивидуального обращения к каждому из них. (Клиенты с самым высоким показателем потенциальной пожизненной ценности по вполне понятным причинам должны были получать от компании больше внимания.)
В то время, когда мы начали работать с Retailco, у нее было около полутора тысяч магазинов. И покупатели, как вы можете понять, снабжали компанию невероятно большими объемами данных. В базе данных содержалась информация почти о двадцати миллионах домохозяйств. Компания знала, что именно приобретало каждое из них, как часто и где. Размер базы данных мог показаться пугающим, но тем, кто любит копаться в цифрах, было где развернуться!
Прежде Retailco уже нанимала на работу опытных маркетологов и поручала им выжимать максимум из своей клиентской базы. Специалистам удалось внедрить некоторые из самых крупных и сложных программ лояльности в розничной отрасли. Теперь Retailco хотела разобраться с показателями пожизненной ценности клиентов, чтобы полностью сосредоточить внимание на лучших для торговой сети покупателях (как настоящих, так и потенциальных) и со временем еще сильнее увеличить их ценность. Модель позволяла нам понять простую, но важную вещь: с ее помощью мы могли знать, сколько денег потратит каждое отдельно взятое домохозяйство на отношения с Retailco в течение следующих трех лет – именно таков срок «всей жизни» в динамичном мире розничной торговли!
Цель была простой, но для ее реализации потребовался сложный и запутанный математический аппарат. Для начала мы выяснили, что означает пожизненная ценность для Retailco на концептуальном уровне, а результат представили в виде диаграммы (см. ниже). Хочу предупредить, что чуть далее приводится самая сложная статистическая модель в этой книге. Если вам удастся понять смысл следующих двух абзацев, то вы не только можете считать себя большим молодцом, но и вправе гордиться, что понимаете суть принципа цепей Маркова.
Как вы можете заметить, мы поместили клиентов в четыре различные группы в зависимости от уровня их расходов. «Отсутствие» означало домохозяйства, не совершавшие в любом из магазинов сети покупок в течение двенадцати месяцев.
Затем мы определили пожизненную ценность домохозяйств следующим образом:
Это означает: пожизненная ценность клиента отчасти состоит из вероятности того, что в последующие три года она окажется в одной из групп (с высоким, средним и низким показателями или показателями отсутствия), а отчасти – из ценности этого домохозяйства в будущем (с высоким, средним или низким показателями). Другими словами, для расчета пожизненной ценности мы должны были сначала предсказать вероятность того, что в следующем году кто-то останется в группе с высоким показателем или, напротив, переместится в другую группу (с низким или средним показателями или его отсутствием). Затем мы умножали эту вероятность на среднюю ценность клиентов, находившихся в том или ином состоянии.
Изложенное мной может показаться слишком сложным, но на практике все было куда проще. Вот вам пример (вполне гипотетический) работы метода. Предположим, мы внимательно изучили данные и заключили, что клиенты Retailco с высоким уровнем ценности тратят 1000 долларов в год, клиенты со средним уровнем – 500 долларов, а с низким – 50 долларов. Предположим также, что сам я отношусь к клиентам Retailco с высоким уровнем ценности.
Затем мы строили две модели. Первая из них предсказывала вероятность, что я останусь клиентом (с использованием метода, который я описал в рассказе об авиакомпании). А вторая предсказывала вероятность, что я останусь клиентом с высокой ценностью или, напротив, перемещусь в группу средней или даже низкой ценности.
Давайте предположим, что, согласно модели, у меня есть 20-процентный шанс перестать быть клиентом, 10-процентный – стать клиентом в группе низкой ценности, 30-процентный – клиентом из средней группы и 40-процентный шанс остаться в группе с высокой ценностью. С помощью приведенной ниже формулы могу рассчитать свою возможную ценность на год второй:
Получ ив данные для второго года, мы сможем, основываясь на прогнозе, повторить расчет и понять, что скорее всего произойдет в течение третьего года.
Итак, у нас появился идеальный механизм расчета приоритетов для Retailco, позволяющий развивать долгосрочные отношения с клиентами, основанные на предположении, что они собираются стать со временем более ценными. Когда Retailco создаст новые программы лояльности и начнет напрямую работать с клиентами, основываясь на нашей модели пожизненной ценности, то продуктивность компании может оказаться значительно выше эффективности ее конкурентов. Подобный метод работы позволяет вам выявлять лучших клиентов и концентрировать усилия на общении с ними.
Разобравшись с этой моделью, Retailco пошла дальше и решила оценить каждого нового клиента с точки зрения того, какую сумму он сможет потратить за время, проведенное с компанией. Специалисты компании сравнили размер начальной покупки с соответствующими данными о своих существующих клиентах. Однако первая покупка вряд ли способна рассказать о многом. Не исключено, что примерно 23 % всех покупателей, совершающих первую покупку, станут со временем крайне ценными клиентами. Но сама по себе такая покупка ничего не скажет о том, перейдет ли клиент в ключевую группу или останется в 77- процентной группе менее ценных.
Со второй покупкой вы получаете больше информации и уже можете хоть что-то сказать о клиентах: в первый раз им был нужен небольшой ремонт машины; во второй раз они купили детские вещи, а когда заполнили форму на получение карты лояльного покупателя, мы узнали, что они живут в пригороде. Давайте отправим им в августе предложение о 20-процентной скидке на школьные принадлежности, а также предложим особые условия покупок на День матери и День отца!
Если вы точно знаете, что именно вам нужно им сказать, то сможете заработать немалые деньги.
Задание на утро следующего понедельника
1.
• сколько денег он тратит на нас в настоящее время?
• считаете ли вы, что он потратит много денег в будущем?
• как долго он был вашим клиентом?
• способен ли он убедить других клиентов покупать ваш бренд?
• дорого ли обходится его обслуживание, то есть является ли общение с ним прибыльным для вас?