страницу бронирования, исследователи проверили данные и по другим гостиницам сети (в частности, Paris Las Vegas, Harrah’s, Bally’s). Казалось, Caesars обладал каким-то магнетическим эффектом. В ходе тестирования телевизионного ролика, в котором рассказывалось о гостинице Caesars в одном из регионов страны, мы обнаружили, что показатель бронирования в этом регионе вырос на 12 %, причем
Совсем скоро все каналы станут цифровыми. Google уже предоставляет вам возможность покупать время для размещения телевизионной рекламы через онлайновый интерфейс. Компания сделала процесс покупки телевизионного времени настолько простым, что теперь им может пользоваться буквально каждый. Покупая время Google TV, вы можете четко понять, насколько много данных собирается в устройствах, подключенных к системам поставщиков вашего кабельного или спутникового телевидения. Например, Google TV позволяет видеть данные по переключению каналов. Это дает рекламодателям возможность понять, сколько зрителей предпочитает не смотреть их рекламу. Мы эти данные использовали для оптимизации рекламных кампаний некоторых из наших клиентов.
Большинство людей, перестающих смотреть рекламу (переключаясь на другой канал), делают это в первые же секунды показа. После первоначального всплеска количество переключающихся зрителей постепенно сокращается. Это вполне типичная ситуация.
Однако мы заметили, что у одного из рекламных роликов Allstate наблюдался второй всплеск после шестнадцати секунд показа.
Это происходило в момент трансляции довольно агрессивного призыва к действию. Полученные данные помогли нам сменить тональность с информирующей на продающую, а также снизить за счет этого частоту переключения на другие каналы.
Соберем все воедино – пример TD Ameritrade
Мы с вами перебрали ряд методов, которые вы можете использовать для оптимизации своих средств коммуникации. Теперь пришло время посмотреть, каким образом они работают все вместе. Для этого мы изучим опыт компании TD Ameritrade, много лет стоявшей на переднем крае оптимизации бизнес-процессов.
Одним из первопроходцев в области аналитики цифровых данных стал Джим Дравиллас, ранее работавший в Ogilvy, а теперь возглавляющий отдел рекламных исследований в Google. Именно он проделал огромную часть работ, описанных в этой главе. Уже с момента нашей первой встречи я понял, что мне есть чему поучиться у этого человека, особенно в технологиях, повышающих эффективность онлайнового маркетинга. Некоторые из его лучших идей нашли свое выражение в работе для компании TD Ameritrade, занимавшейся оказанием брокерских интернет-услуг.
TDA довольно быстро принимает на вооружение новые технологии и представляет собой идеальную бизнес-модель для аналитики. Стратегия компании состоит в наращивании количества обслуживаемых клиентских счетов, что означает: она управляет бизнесом на основании всего двух показателей – количества новых счетов и величины расходов по получению нового счета.
Компания также использует принцип замкнутой обратной связи, то есть она в точности знает, с кем вступает в общение и открывают ли ее собеседники со временем счета или нет. Иными словами, мы можем с легкостью определить причины и следствия различных видов маркетинговой деятельности.
Одним из первых проектов, которые Джим сделал для TDA, был автоматизированный инструмент по отслеживанию частоты показа роликов. Когда вы заходите на сайт CNN.com и видите там рекламу TDA, то можете либо нажать, либо не нажать на ссылку. С большей вероятностью вы кликнете на ссылку, когда увидите рекламу во второй или третий раз (не исключено, что в первый раз вы не обратили на нее внимания). Однако если TDA показывает вам свою рекламу двадцать пятый раз, а вы все не нажимаете на ссылку, будет справедливым предположить, что вы этого уже никогда не сделаете. Вас не заинтересовало предложение этой компании – и все. В дальнейшем TDA начнет показывать свою рекламу кому-то другому, а на вас она сэкономит свои деньги, поскольку вы достигли точки насыщения, после которой компании уже нет смысла донимать вас рекламными сообщениями.
Разумеется, самая сложная задача состоит в определении точки насыщения. Когда она наступает – после того как вы увидели рекламу 15, 25 или 35-й раз? И одинаков ли этот показатель для всех? Именно в этот момент на сцене появился Джим. Он разработал статистическую модель, позволявшую рассчитать точку насыщения, основываясь на характеристиках объявления, места размещения (CNN.com или какой-то другой сайт) и истории вашего поведения в Сети. Кроме того, он создал способ автоматического отключения просмотров рекламы после достижения точки насыщения. Это позволяет вам использовать оставшиеся деньги на что-то другое. В результате внедрения этой программы количество новых лидов выросло на 15 % (при той же величине маркетингового бюджета).
Другим сконструированным Джимом устройством стала программа автоматической ротации (я несколько раз просил его придумать более изящное название, но Джиму не свойственно тратить время на подобные пустяки). Компании типа TDA обычно запускают одновременно сразу несколько рекламных кампаний. Программа Джима анализирует результативность работы каждой из них в режиме реального времени, а затем интегрирует все результаты на рекламном сервере компании.
В результате сервер
Программа Джима не только позволила сделать онлайновую рекламу более эффективной, но и помогла творческим командам получать обратную связь практически тоже в режиме реального времени. Джим снабдил их отчетами, какие форматы изображения, цветовые гаммы, визуальные эффекты и вербальные обращения вызвали наибольший отклик. Понятно, что творческим командам подобная информация пришлась по сердцу. Наконец у них появилась возможность сразу получать оценку своего труда. Теперь, экспериментируя с новыми идеями, они мгновенно видят плоды своей работы. Джим превратил цифровую экосистему в экспериментальную лабораторию, о которой мы уже говорили выше.
Другой пример связан с «анализом дня», в ходе которого мы изучали, какое время суток было наиболее предпочтительным для интернет-рекламы. Цифровой мир дает вам возможность дойти и до такой степени детализации – когда вы сравниваете показатели по каждому часу! Проводя это исследование, мы заметили, что потенциальные клиенты, которых нам удавалось привлечь в течение последнего часа торгов, обладали значительно большей ценностью, были готовы отдать в распоряжение компании больше денег и изъявляли большее желание работать с TDA. Таким образом, мы взяли на вооружение медиастратегию, направленную на то, чтобы завоевать этот временной интервал. Мы закупили все медийное время последнего часа операционного дня на целом ряде крупных сайтов типа CNNMoney и Yahoo Finance. Эта рекламная кампания привлекла на 15 % больше самых ценных клиентов, чем любая другая из проведенных нами. Отличный пример того, как полученная благодаря анализу данных ценная информация способна продуцировать творческие идеи.
Отличное начало
Один из самых примечательных примеров работы Джима для TDA был связан с оптимизацией стартовой страницы. Когда кто-то нажимал на баннер TDA, то оказывался на странице, изображенной ниже.
В то время TDA надеялась, что потребители, попав на страницу, сразу начнут нажимать на кнопку, расположенную в верхнем правом углу (