излучения, установили, что все они волны, только разной длины. Длина волны излучения и есть тот основной признак, по которому мы различаем виды электромагнитного излучения количественно.
Наибольшая длина у радиоволн: от нескольких километров до нескольких сантиметров.
У тепловых лучей она короче — от 1 см до 10-2см.
Еще короче волны видимого света, примерно 4 105 — 8 • 10-5 см.
Самые короткие волны у рентгеновых лучей — 10-7-10-9 см.
Все эти виды излучения распространяются с одной и той же скоростью — со скоростью света с = 3 1010 см/сек.
Отсюда по формуле ? = c/? очень просто вычислить частоту каждого вида излучения. Очевидно, для рентгеновых лучей она будет наибольшей, а для радиоволн — наименьшей.
Очень важно отдавать себе отчет в том, что, конечно, любое излучение — это не синусоида, изображенная на рисунке, а
У каждого вида излучения свои особенности. Сосредоточимся пока на том его виде, который для нас наиболее важен и привычен, — на солнечном излучении. А поскольку оно подчиняется тем же законам, что и любой вид излучения, то в дальнейшем это поможет нам понять законы теплового излучения, которое оказалось столь важным в истории квантовой механики.
Когда вы греетесь на солнце, вы, наверное, не задумываетесь над тем, из каких волн состоят его лучи. Иногда, правда, вы спрашиваете себя, отчего в горах бывают солнечные ожоги и почему нельзя загореть вече-. ром. Исаак Ньютон (1643–1727) жил в Англии, где солнца не так уж много, но все-таки он задумался над тем, Из Чего состоит солнечный свет. Вслед за пражским профессором медицины Маркусом Марци он поставил опыт, знакомый теперь каждому школьнику. Пропустив j луч солнца сквозь призму, он обнаружил за ней на стене радугу — спектр солнечного луча.
Каждому цвету радуги-спектра соответствует своя волна солнечного излучения: самая длинная у красного цвета — 7 10-5 см; у зеленого — 5 • 10-5; у фиолетового — 4 • 10-5. Кроме видимых лучей, в солнечном спектре есть, конечно, и другие, в частности инфракрасные лучи (их длины волн еще больше, чем у красных) и ультрафиолетовые (их волны короче фиолетовых). Следовательно, частота ультрафиолетовых лучей наибольшая, а инфракрасных — наименьшая.
Относительная яркость различных цветов в спектре излучения неодинакова и зависит от температуры излучающего тела: например, в солнечном излучении больше всего желтых лучей. Таким образом, спектр любого излучения показывает, во-первых, какие лучи в нем есть и, во-вторых, сколько их там.
Проходя через атмосферу Земли, солнечный луч изменяет свой спектральный состав, потому что разные лучи солнечного спектра поглощаются атмосферой неодинаково, в частности сильнее всего ультрафиолетовые лучи. На горе слой воздуха меньше, доля ультрафиолетовых лучей больше, и потому обгореть там можно быстрее, чем в долине.
И хотя сам по себе этот факт хорошо известен, мы все-таки напомнили эту важную для дальнейшего деталь: причина солнечных ожогов — ультрафиолетовые лучи, именно они, а не зеленые или красные. Но чтобы обжечь, нужно, во всяком случае, затратить какую-то энергию. Следовательно, наибольшую энергию несут с собой волны наибольшей частоты — ультрафиолетовые, а не инфракрасные (хотя именно они и называются тепловыми). Это очень важный результат.
Итак, всякое тело состоит из атомов, которые мы пока представляем себе как шарики диаметром 10-8 см и разного веса: от 10-24 до 20-22 г. Они очень быстро движутся, колеблются и сталкиваются между собой, причем скорость их движения увеличивается с ростом температуры тела. Это тепловое движение атомов приводит к совершенно новому явлению: к тепловому излучению, свойства которого нам пока неизвестны.
Чтобы узнать их, возвратимся к железному лому, который греется в печи. Чем горячее печь, тем больше тепла излучает лом. Конечно, этот факт знали всегда, но только Джозеф Стефан (1835–1893) в 1879 году эмпирически и Людвиг Эдуард Больцман (1844–1906) в 1884 году теоретически установили количественный закон. Оказалось, что с повышением температуры общее количество излучаемого тепла растет очень быстро — как четвертая степень абсолютной температуры тела.
А что, если в печь вместо лома положить булыжник, как делалось раньше в русских банях? Будет ли его энергия излучения отличаться от излучения железного лома? В 1859 году Густав Роберт Кирхгоф доказал, что не будет, если температура печи в обоих случаях одинакова. Он доказал даже нечто большее, но чтобы понять это нечто, нужно прервать рассказ и более пристально посмотреть на поток излучения, который исходит от нагретого тела.
Так же, как и солнечный свет, этот поток неоднороден. Любое тепловое излучение, во-первых, состоит из лучей различной длины волны, и, во-вторых, их вклад в общий поток излучения различен. Если обе эти характеристики мы знаем, то можем утверждать, что нам известен
Чтобы подчеркнуть тот факт, что доля излучения с частотой ? в общем потоке излучения зависит от температуры Т, обычно пишут такую формулу: U=U (?, Т).
Конечно, если мы будем менять температуру тела, то спектральный состав его теплового излучения также будет меняться. Количественные законы этого изменения установил в 1893 году Вильгельм Вин (1864–1928).
Но даже при одной и той же температуре различные тела излучают по-разному. В этом нетрудно убедиться, если нагревать в темноте одновременно, например, стальной и каменный шары. Вскоре выяснили, однако, что если вместо сплошных шаров нагревать полые, а излучение наблюдать через небольшое отверстие в их стенках, то спектральный состав этого излучения уже не зависит от вещества шара. Такой спектр назвали
Происхождение этого несколько необычного названия легко понять. Представьте себе, что вы не нагреваете шар, а, наоборот, освещаете его снаружи. Вы всегда увидите перед собой черное отверстие независимо от материала шара. Потому что все лучи, попавшие внутрь полости, многократно там отражаются и почти не выходят наружу.
Реально существующий пример такого абсолютно черного тела — обычная или, еще лучше, мартеновская печь. Кстати, если вы смотрели когда-либо внутрь мартеновской печи, то, вероятно, обратили внимание на интересное явление: из ее отверстия льется ровный свет, который не позволяет рассмотреть детали предметов, расположенных внутри печи. Наши знания об излучении позволяют нам теперь понять и этот факт.
Два равных по величине шара, каменный и стальной, на солнце очень просто различить — слишком неодинаково они блестят: стальной шар отражает гораздо больше лучей, чем каменный. Если теперь эти шары нагреть в темноте, то нетрудно проверить, что каменный шар излучает больше, чем стальной. (Кстати, это одна из причин, почему в банях выгоднее раскалять булыжники, а не стальные болванки.)
Если эти шары бросить в мартеновскую печь, туда, где они не только нагреваются и излучают сами, но также поглощают и отражают излучение других тел, то мы увидим (разумеется, если взглянем в печь раньше, чем шары расплавятся) два совершенно одинаковых шара. Почему? Да потому, что если каменный шар больше излучает «своих» лучей, то он больше и поглощает «чужих», а стальной меньше излучает «своих» лучей, но зато больше отражает «чужих». Поэтому общий поток лучей («своих» и «чужих») от обоих 'шаров одинаков; и поэтому их нельзя отличить не только друг от друга, но даже и от стенок печи, в которой они лежат.
Именно этот строгий закон был установлен Кирхгофом в 1759 году: отношение излучательной способности тел к их поглощательной способности есть универсальная функция: U=U (?, Т), независимая от природы тел. В спектральной функции U=U (?, Т) (ее называют и так) заключена почти вся информация о свойствах теплового излучения. В частности, цвет нагретого тела определяют те волны, которых излучается больше всего.
Важность функции U = U (?, Т) поняли сразу же во времена Кирхгофа, но в течение 40 лет не